/* fft/c_pass_3.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,pass_3) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) * twiddle1, const TYPE(gsl_complex) * twiddle2) { size_t i = 0, j = 0; size_t k, k1; const size_t factor = 3; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; const size_t jump = (factor - 1) * product_1; const ATOMIC tau = sqrt (3.0) / 2.0; for (k = 0; k < q; k++) { ATOMIC w1_real, w1_imag, w2_real, w2_imag; if (k == 0) { w1_real = 1.0; w1_imag = 0.0; w2_real = 1.0; w2_imag = 0.0; } else { if (sign == gsl_fft_forward) { /* forward tranform */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = GSL_IMAG(twiddle2[k - 1]); } else { /* backward tranform: w -> conjugate(w) */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = -GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = -GSL_IMAG(twiddle2[k - 1]); } } for (k1 = 0; k1 < product_1; k1++) { const ATOMIC z0_real = REAL(in,istride,i); const ATOMIC z0_imag = IMAG(in,istride,i); const ATOMIC z1_real = REAL(in,istride,i+m); const ATOMIC z1_imag = IMAG(in,istride,i+m); const ATOMIC z2_real = REAL(in,istride,i+2*m); const ATOMIC z2_imag = IMAG(in,istride,i+2*m); /* compute x = W(3) z */ /* t1 = z1 + z2 */ const ATOMIC t1_real = z1_real + z2_real; const ATOMIC t1_imag = z1_imag + z2_imag; /* t2 = z0 - t1/2 */ const ATOMIC t2_real = z0_real - t1_real / 2.0; const ATOMIC t2_imag = z0_imag - t1_imag / 2.0; /* t3 = (+/-) sin(pi/3)*(z1 - z2) */ const ATOMIC t3_real = ((int) sign) * tau * (z1_real - z2_real); const ATOMIC t3_imag = ((int) sign) * tau * (z1_imag - z2_imag); /* x0 = z0 + t1 */ const ATOMIC x0_real = z0_real + t1_real; const ATOMIC x0_imag = z0_imag + t1_imag; /* x1 = t2 + i t3 */ const ATOMIC x1_real = t2_real - t3_imag; const ATOMIC x1_imag = t2_imag + t3_real; /* x2 = t2 - i t3 */ const ATOMIC x2_real = t2_real + t3_imag; const ATOMIC x2_imag = t2_imag - t3_real; /* apply twiddle factors */ /* to0 = 1 * x0 */ REAL(out,ostride,j) = x0_real; IMAG(out,ostride,j) = x0_imag; /* to1 = w1 * x1 */ REAL(out,ostride,j+product_1) = w1_real * x1_real - w1_imag * x1_imag; IMAG(out,ostride,j+product_1) = w1_real * x1_imag + w1_imag * x1_real; /* to2 = w2 * x2 */ REAL(out,ostride,j+2*product_1) = w2_real * x2_real - w2_imag * x2_imag; IMAG(out,ostride,j+2*product_1) = w2_real * x2_imag + w2_imag * x2_real; i++; j++; } j += jump; } return 0; }