/* fft/c_main.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "c_pass.h" int FUNCTION(gsl_fft_complex,forward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const TYPE(gsl_fft_complex_wavetable) * wavetable, TYPE(gsl_fft_complex_workspace) * work) { gsl_fft_direction sign = gsl_fft_forward; int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n, wavetable, work, sign); return status; } int FUNCTION(gsl_fft_complex,backward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const TYPE(gsl_fft_complex_wavetable) * wavetable, TYPE(gsl_fft_complex_workspace) * work) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n, wavetable, work, sign); return status; } int FUNCTION(gsl_fft_complex,inverse) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const TYPE(gsl_fft_complex_wavetable) * wavetable, TYPE(gsl_fft_complex_workspace) * work) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n, wavetable, work, sign); if (status) { return status; } /* normalize inverse fft with 1/n */ { const ATOMIC norm = ONE / (ATOMIC)n; size_t i; for (i = 0; i < n; i++) { REAL(data,stride,i) *= norm; IMAG(data,stride,i) *= norm; } } return status; } int FUNCTION(gsl_fft_complex,transform) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const TYPE(gsl_fft_complex_wavetable) * wavetable, TYPE(gsl_fft_complex_workspace) * work, const gsl_fft_direction sign) { const size_t nf = wavetable->nf; size_t i; size_t q, product = 1; TYPE(gsl_complex) *twiddle1, *twiddle2, *twiddle3, *twiddle4, *twiddle5, *twiddle6; size_t state = 0; BASE * const scratch = work->scratch; BASE * in = data; size_t istride = stride; BASE * out = scratch; size_t ostride = 1; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } if (n == 1) { /* FFT of 1 data point is the identity */ return 0; } if (n != wavetable->n) { GSL_ERROR ("wavetable does not match length of data", GSL_EINVAL); } if (n != work->n) { GSL_ERROR ("workspace does not match length of data", GSL_EINVAL); } for (i = 0; i < nf; i++) { const size_t factor = wavetable->factor[i]; product *= factor; q = n / product; if (state == 0) { in = data; istride = stride; out = scratch; ostride = 1; state = 1; } else { in = scratch; istride = 1; out = data; ostride = stride; state = 0; } if (factor == 2) { twiddle1 = wavetable->twiddle[i]; FUNCTION(fft_complex,pass_2) (in, istride, out, ostride, sign, product, n, twiddle1); } else if (factor == 3) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; FUNCTION(fft_complex,pass_3) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2); } else if (factor == 4) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; twiddle3 = twiddle2 + q; FUNCTION(fft_complex,pass_4) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2, twiddle3); } else if (factor == 5) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; twiddle3 = twiddle2 + q; twiddle4 = twiddle3 + q; FUNCTION(fft_complex,pass_5) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2, twiddle3, twiddle4); } else if (factor == 6) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; twiddle3 = twiddle2 + q; twiddle4 = twiddle3 + q; twiddle5 = twiddle4 + q; FUNCTION(fft_complex,pass_6) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2, twiddle3, twiddle4, twiddle5); } else if (factor == 7) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; twiddle3 = twiddle2 + q; twiddle4 = twiddle3 + q; twiddle5 = twiddle4 + q; twiddle6 = twiddle5 + q; FUNCTION(fft_complex,pass_7) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2, twiddle3, twiddle4, twiddle5, twiddle6); } else { twiddle1 = wavetable->twiddle[i]; FUNCTION(fft_complex,pass_n) (in, istride, out, ostride, sign, factor, product, n, twiddle1); } } if (state == 1) /* copy results back from scratch to data */ { for (i = 0; i < n; i++) { REAL(data,stride,i) = REAL(scratch,1,i) ; IMAG(data,stride,i) = IMAG(scratch,1,i) ; } } return 0; }