/* specfunc/mathieu_angfunc.c * * Copyright (C) 2002 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #include #include #include #include #include #include int gsl_sf_mathieu_ce_e(int order, double qq, double zz, gsl_sf_result *result) { int even_odd, ii, status; double coeff[GSL_SF_MATHIEU_COEFF], norm, fn, factor; gsl_sf_result aa; norm = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial case where q = 0. */ if (qq == 0.0) { norm = 1.0; if (order == 0) norm = sqrt(2.0); fn = cos(order*zz)/norm; result->val = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } /* Use symmetry characteristics of the functions to handle cases with negative order. */ if (order < 0) order *= -1; /* Compute the characteristic value. */ status = gsl_sf_mathieu_a_e(order, qq, &aa); if (status != GSL_SUCCESS) { return status; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_a_coeff(order, qq, aa.val, coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { fn = 0.0; norm = coeff[0]*coeff[0]; for (ii=0; iival = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } int gsl_sf_mathieu_se_e(int order, double qq, double zz, gsl_sf_result *result) { int even_odd, ii, status; double coeff[GSL_SF_MATHIEU_COEFF], norm, fn, factor; gsl_sf_result aa; norm = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial cases where order = 0 and/or q = 0. */ if (order == 0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } if (qq == 0.0) { norm = 1.0; fn = sin(order*zz); result->val = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } /* Use symmetry characteristics of the functions to handle cases with negative order. */ if (order < 0) order *= -1; /* Compute the characteristic value. */ status = gsl_sf_mathieu_b_e(order, qq, &aa); if (status != GSL_SUCCESS) { return status; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_b_coeff(order, qq, aa.val, coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { fn = 0.0; for (ii=0; iival = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } int gsl_sf_mathieu_ce_array(int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]) { int even_odd, order, ii, jj, status; double coeff[GSL_SF_MATHIEU_COEFF], *aa = work->aa, norm; /* Initialize the result array to zeroes. */ for (ii=0; iisize < (unsigned int)nmax) { GSL_ERROR("Work space not large enough", GSL_EINVAL); } if (nmin < 0 || nmax < nmin) { GSL_ERROR("domain error", GSL_EDOM); } /* Compute all of the eigenvalues up to nmax. */ gsl_sf_mathieu_a_array(0, nmax, qq, work, aa); for (ii=0, order=nmin; order<=nmax; ii++, order++) { norm = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial case where q = 0. */ if (qq == 0.0) { norm = 1.0; if (order == 0) norm = sqrt(2.0); result_array[ii] = cos(order*zz)/norm; continue; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_a_coeff(order, qq, aa[order], coeff); if (status != GSL_SUCCESS) return status; if (even_odd == 0) { norm = coeff[0]*coeff[0]; for (jj=0; jjbb, norm; /* Initialize the result array to zeroes. */ for (ii=0; iisize < (unsigned int)nmax) { GSL_ERROR("Work space not large enough", GSL_EINVAL); } if (nmin < 0 || nmax < nmin) { GSL_ERROR("domain error", GSL_EDOM); } /* Compute all of the eigenvalues up to nmax. */ gsl_sf_mathieu_b_array(0, nmax, qq, work, bb); for (ii=0, order=nmin; order<=nmax; ii++, order++) { norm = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial cases where order = 0 and/or q = 0. */ if (order == 0) { norm = 1.0; result_array[ii] = 0.0; continue; } if (qq == 0.0) { norm = 1.0; result_array[ii] = sin(order*zz); continue; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_b_coeff(order, qq, bb[order], coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (jj=0; jj