/* specfunc/legendre.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Declare private but non-local support functions * used in various Legendre function evaluations. */ #include /* Large negative mu asymptotic * P^{-mu}_{-1/2 + I tau}, mu -> Inf * |x| < 1 */ int gsl_sf_conicalP_xlt1_large_neg_mu_e(double mu, double tau, double x, gsl_sf_result * result, double * ln_multiplier); /* Large tau uniform asymptotics * P^{-mu}_{-1/2 + I tau}, tau -> Inf * 1 < x */ int gsl_sf_conicalP_xgt1_neg_mu_largetau_e(const double mu, const double tau, const double x, double acosh_x, gsl_sf_result * result, double * ln_multiplier); /* Large tau uniform asymptotics * P^{-mu}_{-1/2 + I tau}, tau -> Inf * -1 < x < 1 */ int gsl_sf_conicalP_xlt1_neg_mu_largetau_e(const double mu, const double tau, const double x, const double acos_x, gsl_sf_result * result, double * ln_multiplier); /* P^{mu}_{-1/2 + I tau} * x->Inf * * * This is effective to precision EPS for * * (mu^2 + tau^2)/((1 + tau^2)^(1/2) x^2) < EPS^{1/3} * * since it goes only to a fixed order, based on the * representation in terms of hypegeometric functions * of argument 1/x^2. * [Zhurina+Karmazina, (3.8)] */ int gsl_sf_conicalP_large_x_e(const double mu, const double tau, const double x, gsl_sf_result * result, double * ln_multiplier);