/* specfunc/gsl_sf_coulomb.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_COULOMB_H__ #define __GSL_SF_COULOMB_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Normalized hydrogenic bound states, radial dependence. */ /* R_1 := 2Z sqrt(Z) exp(-Z r) */ int gsl_sf_hydrogenicR_1_e(const double Z, const double r, gsl_sf_result * result); double gsl_sf_hydrogenicR_1(const double Z, const double r); /* R_n := norm exp(-Z r/n) (2Z/n)^l Laguerre[n-l-1, 2l+1, 2Z/n r] * * normalization such that psi(n,l,r) = R_n Y_{lm} */ int gsl_sf_hydrogenicR_e(const int n, const int l, const double Z, const double r, gsl_sf_result * result); double gsl_sf_hydrogenicR(const int n, const int l, const double Z, const double r); /* Coulomb wave functions F_{lam_F}(eta,x), G_{lam_G}(eta,x) * and their derivatives; lam_G := lam_F - k_lam_G * * lam_F, lam_G > -0.5 * x > 0.0 * * Conventions of Abramowitz+Stegun. * * Because there can be a large dynamic range of values, * overflows are handled gracefully. If an overflow occurs, * GSL_EOVRFLW is signalled and exponent(s) are returned * through exp_F, exp_G. These are such that * * F_L(eta,x) = fc[k_L] * exp(exp_F) * G_L(eta,x) = gc[k_L] * exp(exp_G) * F_L'(eta,x) = fcp[k_L] * exp(exp_F) * G_L'(eta,x) = gcp[k_L] * exp(exp_G) */ int gsl_sf_coulomb_wave_FG_e(const double eta, const double x, const double lam_F, const int k_lam_G, gsl_sf_result * F, gsl_sf_result * Fp, gsl_sf_result * G, gsl_sf_result * Gp, double * exp_F, double * exp_G); /* F_L(eta,x) as array */ int gsl_sf_coulomb_wave_F_array( double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exponent ); /* F_L(eta,x), G_L(eta,x) as arrays */ int gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * gc_array, double * F_exponent, double * G_exponent ); /* F_L(eta,x), G_L(eta,x), F'_L(eta,x), G'_L(eta,x) as arrays */ int gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * fcp_array, double * gc_array, double * gcp_array, double * F_exponent, double * G_exponent ); /* Coulomb wave function divided by the argument, * F(eta, x)/x. This is the function which reduces to * spherical Bessel functions in the limit eta->0. */ int gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exponent ); /* Coulomb wave function normalization constant. * [Abramowitz+Stegun 14.1.8, 14.1.9] */ int gsl_sf_coulomb_CL_e(double L, double eta, gsl_sf_result * result); int gsl_sf_coulomb_CL_array(double Lmin, int kmax, double eta, double * cl); __END_DECLS #endif /* __GSL_SF_COULOMB_H__ */