/* specfunc/bessel_Kn.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "bessel.h" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* [Abramowitz+Stegun, 9.6.11] * assumes n >= 1 */ static int bessel_Kn_scaled_small_x(const int n, const double x, gsl_sf_result * result) { int k; double y = 0.25 * x * x; double ln_x_2 = log(0.5*x); double ex = exp(x); gsl_sf_result ln_nm1_fact; double k_term; double term1, sum1, ln_pre1; double term2, sum2, pre2; gsl_sf_lnfact_e((unsigned int)(n-1), &ln_nm1_fact); ln_pre1 = -n*ln_x_2 + ln_nm1_fact.val; if(ln_pre1 > GSL_LOG_DBL_MAX - 3.0) GSL_ERROR ("error", GSL_EOVRFLW); sum1 = 1.0; k_term = 1.0; for(k=1; k<=n-1; k++) { k_term *= -y/(k * (n-k)); sum1 += k_term; } term1 = 0.5 * exp(ln_pre1) * sum1; pre2 = 0.5 * exp(n*ln_x_2); if(pre2 > 0.0) { const int KMAX = 20; gsl_sf_result psi_n; gsl_sf_result npk_fact; double yk = 1.0; double k_fact = 1.0; double psi_kp1 = -M_EULER; double psi_npkp1; gsl_sf_psi_int_e(n, &psi_n); gsl_sf_fact_e((unsigned int)n, &npk_fact); psi_npkp1 = psi_n.val + 1.0/n; sum2 = (psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/npk_fact.val; for(k=1; kval = ex * (term1 + term2); result->err = ex * GSL_DBL_EPSILON * (fabs(ln_pre1)*fabs(term1) + fabs(term2)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Kn_scaled_e(int n, const double x, gsl_sf_result * result) { n = abs(n); /* K(-n, z) = K(n, z) */ /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(n == 0) { return gsl_sf_bessel_K0_scaled_e(x, result); } else if(n == 1) { return gsl_sf_bessel_K1_scaled_e(x, result); } else if(x <= 5.0) { return bessel_Kn_scaled_small_x(n, x, result); } else if(GSL_ROOT3_DBL_EPSILON * x > 0.25 * (n*n + 1)) { return gsl_sf_bessel_Knu_scaled_asympx_e((double)n, x, result); } else if(GSL_MIN(0.29/(n*n), 0.5/(n*n + x*x)) < GSL_ROOT3_DBL_EPSILON) { return gsl_sf_bessel_Knu_scaled_asymp_unif_e((double)n, x, result); } else { /* Upward recurrence. [Gradshteyn + Ryzhik, 8.471.1] */ double two_over_x = 2.0/x; gsl_sf_result r_b_jm1; gsl_sf_result r_b_j; int stat_0 = gsl_sf_bessel_K0_scaled_e(x, &r_b_jm1); int stat_1 = gsl_sf_bessel_K1_scaled_e(x, &r_b_j); double b_jm1 = r_b_jm1.val; double b_j = r_b_j.val; double b_jp1; int j; for(j=1; jval = b_j; result->err = n * (fabs(b_j) * (fabs(r_b_jm1.err/r_b_jm1.val) + fabs(r_b_j.err/r_b_j.val))); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_0, stat_1); } } int gsl_sf_bessel_Kn_e(const int n, const double x, gsl_sf_result * result) { const int status = gsl_sf_bessel_Kn_scaled_e(n, x, result); const double ex = exp(-x); result->val *= ex; result->err *= ex; result->err += x * GSL_DBL_EPSILON * fabs(result->val); return status; } int gsl_sf_bessel_Kn_scaled_array(const int nmin, const int nmax, const double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(nmin < 0 || nmax < nmin || x <= 0.0) { int j; for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0; GSL_ERROR ("domain error", GSL_EDOM); } else if(nmax == 0) { gsl_sf_result b; int stat = gsl_sf_bessel_K0_scaled_e(x, &b); result_array[0] = b.val; return stat; } else { double two_over_x = 2.0/x; gsl_sf_result r_Knm1; gsl_sf_result r_Kn; int stat_0 = gsl_sf_bessel_Kn_scaled_e(nmin, x, &r_Knm1); int stat_1 = gsl_sf_bessel_Kn_scaled_e(nmin+1, x, &r_Kn); int stat = GSL_ERROR_SELECT_2(stat_0, stat_1); double Knp1; double Kn = r_Kn.val; double Knm1 = r_Knm1.val; int n; for(n=nmin+1; n<=nmax+1; n++) { if(Knm1 < GSL_DBL_MAX) { result_array[n-1-nmin] = Knm1; Knp1 = Knm1 + n * two_over_x * Kn; Knm1 = Kn; Kn = Knp1; } else { /* Overflow. Set the rest of the elements to * zero and bug out. * FIXME: Note: this relies on the convention * that the test x < DBL_MIN fails for x not * a number. This may be only an IEEE convention, * so the portability is unclear. */ int j; for(j=n; j<=nmax+1; j++) result_array[j-1-nmin] = 0.0; GSL_ERROR ("overflow", GSL_EOVRFLW); } } return stat; } } int gsl_sf_bessel_Kn_array(const int nmin, const int nmax, const double x, double * result_array) { int status = gsl_sf_bessel_Kn_scaled_array(nmin, nmax, x, result_array); double ex = exp(-x); int i; for(i=0; i<=nmax-nmin; i++) result_array[i] *= ex; return status; } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Kn_scaled(const int n, const double x) { EVAL_RESULT(gsl_sf_bessel_Kn_scaled_e(n, x, &result)); } double gsl_sf_bessel_Kn(const int n, const double x) { EVAL_RESULT(gsl_sf_bessel_Kn_e(n, x, &result)); }