/* multiroots/dogleg.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "enorm.c" static void compute_diag (const gsl_matrix * J, gsl_vector * diag); static void update_diag (const gsl_matrix * J, gsl_vector * diag); static double compute_delta (gsl_vector * diag, gsl_vector * x); static void compute_df (const gsl_vector * f_trial, const gsl_vector * f, gsl_vector * df); static void compute_wv (const gsl_vector * qtdf, const gsl_vector *rdx, const gsl_vector *dx, const gsl_vector *diag, double pnorm, gsl_vector * w, gsl_vector * v); static double scaled_enorm (const gsl_vector * d, const gsl_vector * f); static double scaled_enorm (const gsl_vector * d, const gsl_vector * f) { double e2 = 0 ; size_t i, n = f->size ; for (i = 0; i < n ; i++) { double fi= gsl_vector_get(f, i); double di= gsl_vector_get(d, i); double u = di * fi; e2 += u * u ; } return sqrt(e2); } static double enorm_sum (const gsl_vector * a, const gsl_vector * b); static double enorm_sum (const gsl_vector * a, const gsl_vector * b) { double e2 = 0 ; size_t i, n = a->size ; for (i = 0; i < n ; i++) { double ai= gsl_vector_get(a, i); double bi= gsl_vector_get(b, i); double u = ai + bi; e2 += u * u ; } return sqrt(e2); } static void compute_wv (const gsl_vector * qtdf, const gsl_vector *rdx, const gsl_vector *dx, const gsl_vector *diag, double pnorm, gsl_vector * w, gsl_vector * v) { size_t i, n = qtdf->size; for (i = 0; i < n; i++) { double qtdfi = gsl_vector_get (qtdf, i); double rdxi = gsl_vector_get (rdx, i); double dxi = gsl_vector_get (dx, i); double diagi = gsl_vector_get (diag, i); gsl_vector_set (w, i, (qtdfi - rdxi) / pnorm); gsl_vector_set (v, i, diagi * diagi * dxi / pnorm); } } static void compute_df (const gsl_vector * f_trial, const gsl_vector * f, gsl_vector * df) { size_t i, n = f->size; for (i = 0; i < n; i++) { double dfi = gsl_vector_get (f_trial, i) - gsl_vector_get (f, i); gsl_vector_set (df, i, dfi); } } static void compute_diag (const gsl_matrix * J, gsl_vector * diag) { size_t i, j, n = diag->size; for (j = 0; j < n; j++) { double sum = 0; for (i = 0; i < n; i++) { double Jij = gsl_matrix_get (J, i, j); sum += Jij * Jij; } if (sum == 0) sum = 1.0; gsl_vector_set (diag, j, sqrt (sum)); } } static void update_diag (const gsl_matrix * J, gsl_vector * diag) { size_t i, j, n = diag->size; for (j = 0; j < n; j++) { double cnorm, diagj, sum = 0; for (i = 0; i < n; i++) { double Jij = gsl_matrix_get (J, i, j); sum += Jij * Jij; } if (sum == 0) sum = 1.0; cnorm = sqrt (sum); diagj = gsl_vector_get (diag, j); if (cnorm > diagj) gsl_vector_set (diag, j, cnorm); } } static double compute_delta (gsl_vector * diag, gsl_vector * x) { double Dx = scaled_enorm (diag, x); double factor = 100; return (Dx > 0) ? factor * Dx : factor; } static double compute_actual_reduction (double fnorm, double fnorm1) { double actred; if (fnorm1 < fnorm) { double u = fnorm1 / fnorm; actred = 1 - u * u; } else { actred = -1; } return actred; } static double compute_predicted_reduction (double fnorm, double fnorm1) { double prered; if (fnorm1 < fnorm) { double u = fnorm1 / fnorm; prered = 1 - u * u; } else { prered = 0; } return prered; } static void compute_qtf (const gsl_matrix * q, const gsl_vector * f, gsl_vector * qtf) { size_t i, j, N = f->size ; for (j = 0; j < N; j++) { double sum = 0; for (i = 0; i < N; i++) sum += gsl_matrix_get (q, i, j) * gsl_vector_get (f, i); gsl_vector_set (qtf, j, sum); } } static void compute_rdx (const gsl_matrix * r, const gsl_vector * dx, gsl_vector * rdx) { size_t i, j, N = dx->size ; for (i = 0; i < N; i++) { double sum = 0; for (j = i; j < N; j++) { sum += gsl_matrix_get (r, i, j) * gsl_vector_get (dx, j); } gsl_vector_set (rdx, i, sum); } } static void compute_trial_step (gsl_vector *x, gsl_vector * dx, gsl_vector * x_trial) { size_t i, N = x->size; for (i = 0; i < N; i++) { double pi = gsl_vector_get (dx, i); double xi = gsl_vector_get (x, i); gsl_vector_set (x_trial, i, xi + pi); } } static int newton_direction (const gsl_matrix * r, const gsl_vector * qtf, gsl_vector * p) { const size_t N = r->size2; size_t i; int status; status = gsl_linalg_R_solve (r, qtf, p); #ifdef DEBUG printf("rsolve status = %d\n", status); #endif for (i = 0; i < N; i++) { double pi = gsl_vector_get (p, i); gsl_vector_set (p, i, -pi); } return status; } static void gradient_direction (const gsl_matrix * r, const gsl_vector * qtf, const gsl_vector * diag, gsl_vector * g) { const size_t M = r->size1; const size_t N = r->size2; size_t i, j; for (j = 0; j < M; j++) { double sum = 0; double dj; for (i = 0; i < N; i++) { sum += gsl_matrix_get (r, i, j) * gsl_vector_get (qtf, i); } dj = gsl_vector_get (diag, j); gsl_vector_set (g, j, -sum / dj); } } static void minimum_step (double gnorm, const gsl_vector * diag, gsl_vector * g) { const size_t N = g->size; size_t i; for (i = 0; i < N; i++) { double gi = gsl_vector_get (g, i); double di = gsl_vector_get (diag, i); gsl_vector_set (g, i, (gi / gnorm) / di); } } static void compute_Rg (const gsl_matrix * r, const gsl_vector * gradient, gsl_vector * Rg) { const size_t N = r->size2; size_t i, j; for (i = 0; i < N; i++) { double sum = 0; for (j = i; j < N; j++) { double gj = gsl_vector_get (gradient, j); double rij = gsl_matrix_get (r, i, j); sum += rij * gj; } gsl_vector_set (Rg, i, sum); } } static void scaled_addition (double alpha, gsl_vector * newton, double beta, gsl_vector * gradient, gsl_vector * p) { const size_t N = p->size; size_t i; for (i = 0; i < N; i++) { double ni = gsl_vector_get (newton, i); double gi = gsl_vector_get (gradient, i); gsl_vector_set (p, i, alpha * ni + beta * gi); } } static int dogleg (const gsl_matrix * r, const gsl_vector * qtf, const gsl_vector * diag, double delta, gsl_vector * newton, gsl_vector * gradient, gsl_vector * p) { double qnorm, gnorm, sgnorm, bnorm, temp; newton_direction (r, qtf, newton); #ifdef DEBUG printf("newton = "); gsl_vector_fprintf(stdout, newton, "%g"); printf("\n"); #endif qnorm = scaled_enorm (diag, newton); if (qnorm <= delta) { gsl_vector_memcpy (p, newton); #ifdef DEBUG printf("took newton (qnorm = %g <= delta = %g)\n", qnorm, delta); #endif return GSL_SUCCESS; } gradient_direction (r, qtf, diag, gradient); #ifdef DEBUG printf("grad = "); gsl_vector_fprintf(stdout, gradient, "%g"); printf("\n"); #endif gnorm = enorm (gradient); if (gnorm == 0) { double alpha = delta / qnorm; double beta = 0; scaled_addition (alpha, newton, beta, gradient, p); #ifdef DEBUG printf("took scaled newton because gnorm = 0\n"); #endif return GSL_SUCCESS; } minimum_step (gnorm, diag, gradient); compute_Rg (r, gradient, p); /* Use p as temporary space to compute Rg */ #ifdef DEBUG printf("mingrad = "); gsl_vector_fprintf(stdout, gradient, "%g"); printf("\n"); printf("Rg = "); gsl_vector_fprintf(stdout, p, "%g"); printf("\n"); #endif temp = enorm (p); sgnorm = (gnorm / temp) / temp; if (sgnorm > delta) { double alpha = 0; double beta = delta; scaled_addition (alpha, newton, beta, gradient, p); #ifdef DEBUG printf("took gradient\n"); #endif return GSL_SUCCESS; } bnorm = enorm (qtf); { double bg = bnorm / gnorm; double bq = bnorm / qnorm; double dq = delta / qnorm; double dq2 = dq * dq; double sd = sgnorm / delta; double sd2 = sd * sd; double t1 = bg * bq * sd; double u = t1 - dq; double t2 = t1 - dq * sd2 + sqrt (u * u + (1-dq2) * (1 - sd2)); double alpha = dq * (1 - sd2) / t2; double beta = (1 - alpha) * sgnorm; #ifdef DEBUG printf("bnorm = %g\n", bnorm); printf("gnorm = %g\n", gnorm); printf("qnorm = %g\n", qnorm); printf("delta = %g\n", delta); printf("alpha = %g beta = %g\n", alpha, beta); printf("took scaled combination of newton and gradient\n"); #endif scaled_addition (alpha, newton, beta, gradient, p); } return GSL_SUCCESS; }