/* multiroots/dnewton.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include /* Newton method using a finite difference approximation to the jacobian. The derivatives are estimated using a step size of h_i = sqrt(DBL_EPSILON) * x_i */ typedef struct { gsl_matrix * J; gsl_matrix * lu; gsl_permutation * permutation; } dnewton_state_t; static int dnewton_alloc (void * vstate, size_t n); static int dnewton_set (void * vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static int dnewton_iterate (void * vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static void dnewton_free (void * vstate); static int dnewton_alloc (void * vstate, size_t n) { dnewton_state_t * state = (dnewton_state_t *) vstate; gsl_permutation * p; gsl_matrix * m, * J; m = gsl_matrix_calloc (n,n); if (m == 0) { GSL_ERROR ("failed to allocate space for lu", GSL_ENOMEM); } state->lu = m ; p = gsl_permutation_calloc (n); if (p == 0) { gsl_matrix_free(m); GSL_ERROR ("failed to allocate space for permutation", GSL_ENOMEM); } state->permutation = p ; J = gsl_matrix_calloc (n,n); if (J == 0) { gsl_permutation_free(p); gsl_matrix_free(m); GSL_ERROR ("failed to allocate space for d", GSL_ENOMEM); } state->J = J; return GSL_SUCCESS; } static int dnewton_set (void * vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { dnewton_state_t * state = (dnewton_state_t *) vstate; size_t i, n = function->n ; int status; status = GSL_MULTIROOT_FN_EVAL (function, x, f); if (status) return status; status = gsl_multiroot_fdjacobian (function, x, f, GSL_SQRT_DBL_EPSILON, state->J); if (status) return status; for (i = 0; i < n; i++) { gsl_vector_set (dx, i, 0.0); } return GSL_SUCCESS; } static int dnewton_iterate (void * vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { dnewton_state_t * state = (dnewton_state_t *) vstate; int signum ; size_t i; size_t n = function->n ; gsl_matrix_memcpy (state->lu, state->J); { int status = gsl_linalg_LU_decomp (state->lu, state->permutation, &signum); if (status) return status; } { int status = gsl_linalg_LU_solve (state->lu, state->permutation, f, dx); if (status) return status; } for (i = 0; i < n; i++) { double e = gsl_vector_get (dx, i); double y = gsl_vector_get (x, i); gsl_vector_set (dx, i, -e); gsl_vector_set (x, i, y - e); } { int status = GSL_MULTIROOT_FN_EVAL (function, x, f); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } gsl_multiroot_fdjacobian (function, x, f, GSL_SQRT_DBL_EPSILON, state->J); return GSL_SUCCESS; } static void dnewton_free (void * vstate) { dnewton_state_t * state = (dnewton_state_t *) vstate; gsl_matrix_free(state->J); gsl_matrix_free(state->lu); gsl_permutation_free(state->permutation); } static const gsl_multiroot_fsolver_type dnewton_type = {"dnewton", /* name */ sizeof (dnewton_state_t), &dnewton_alloc, &dnewton_set, &dnewton_iterate, &dnewton_free}; const gsl_multiroot_fsolver_type * gsl_multiroot_fsolver_dnewton = &dnewton_type;