/* ode-initval/rk4imp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 4, Gaussian implicit */ /* Author: G. Jungman */ /* Error estimation by step doubling, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. Method coefficients can also be found in it. */ #include #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *k1nu; double *k2nu; double *ytmp1; double *ytmp2; double *y0; double *y0_orig; double *y_onestep; } rk4imp_state_t; static void * rk4imp_alloc (size_t dim) { rk4imp_state_t *state = (rk4imp_state_t *) malloc (sizeof (rk4imp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk4imp_state", GSL_ENOMEM); } state->k1nu = (double *) malloc (dim * sizeof (double)); if (state->k1nu == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1nu", GSL_ENOMEM); } state->k2nu = (double *) malloc (dim * sizeof (double)); if (state->k2nu == 0) { free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for k2nu", GSL_ENOMEM); } state->ytmp1 = (double *) malloc (dim * sizeof (double)); if (state->ytmp1 == 0) { free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp1", GSL_ENOMEM); } state->ytmp2 = (double *) malloc (dim * sizeof (double)); if (state->ytmp2 == 0) { free (state->ytmp1); free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp2", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->ytmp2); free (state->ytmp1); free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->y0_orig = (double *) malloc (dim * sizeof (double)); if (state->y0_orig == 0) { free (state->y0); free (state->ytmp2); free (state->ytmp1); free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->y0_orig); free (state->y0); free (state->ytmp2); free (state->ytmp1); free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } return state; } static int rk4imp_step (double *y, rk4imp_state_t *state, const double h, const double t, const size_t dim, const gsl_odeiv_system *sys) { /* Makes a Runge-Kutta 4th order implicit advance with step size h. y0 is initial values of variables y. The implicit matrix equations to solve are: Y1 = y0 + h * a11 * f(t + h * c1, Y1) + h * a12 * f(t + h * c2, Y2) Y2 = y0 + h * a21 * f(t + h * c1, Y1) + h * a22 * f(t + h * c2, Y2) y = y0 + h * b1 * f(t + h * c1, Y1) + h * b2 * f(t + h * c2, Y2) with constant coefficients a, b and c. For this method they are: b=[0.5 0.5] c=[(3-sqrt(3))/6 (3+sqrt(3))/6] a11=1/4, a12=(3-2*sqrt(3))/12, a21=(3+2*sqrt(3))/12 and a22=1/4 */ const double ir3 = 1.0 / M_SQRT3; const int iter_steps = 3; int nu; size_t i; double *const k1nu = state->k1nu; double *const k2nu = state->k2nu; double *const ytmp1 = state->ytmp1; double *const ytmp2 = state->ytmp2; /* iterative solution of Y1 and Y2. Note: This method does not check for convergence of the iterative solution! */ for (nu = 0; nu < iter_steps; nu++) { for (i = 0; i < dim; i++) { ytmp1[i] = y[i] + h * (0.25 * k1nu[i] + 0.5 * (0.5 - ir3) * k2nu[i]); ytmp2[i] = y[i] + h * (0.25 * k2nu[i] + 0.5 * (0.5 + ir3) * k1nu[i]); } { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h * (1.0 - ir3), ytmp1, k1nu); if (s != GSL_SUCCESS) { return s; } } { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h * (1.0 + ir3), ytmp2, k2nu); if (s != GSL_SUCCESS) { return s; } } } /* assignment */ for (i = 0; i < dim; i++) { const double d_i = 0.5 * (k1nu[i] + k2nu[i]); y[i] += h * d_i; } return GSL_SUCCESS; } static int rk4imp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; size_t i; double *y0 = state->y0; double *y0_orig = state->y0_orig; double *y_onestep = state->y_onestep; double *k1nu = state->k1nu; double *k2nu = state->k2nu; /* Initialization step */ DBL_MEMCPY (y0, y, dim); /* Save initial values in case of failure */ DBL_MEMCPY (y0_orig, y, dim); if (dydt_in != 0) { DBL_MEMCPY (k1nu, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1nu); if (s != GSL_SUCCESS) { return s; } } DBL_MEMCPY (k2nu, k1nu, dim); /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk4imp_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ { int s = rk4imp_step (y, state, h/2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (y0, y, dim); { int s = GSL_ODEIV_FN_EVAL (sys, t + h/2.0, y, k1nu); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (k2nu, k1nu, dim); { int s = rk4imp_step (y, state, h/2.0, t + h/2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Error estimation */ /* Denominator in step doubling error equation * yerr = 0.5 * | y(onestep) - y(twosteps) | / (2^order - 1) */ for (i = 0; i < dim; i++) { yerr[i] = 8.0 * 0.5 * (y[i] - y_onestep[i]) / 15.0; } return GSL_SUCCESS; } static int rk4imp_reset (void *vstate, size_t dim) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; DBL_ZERO_MEMSET (state->y_onestep, dim); DBL_ZERO_MEMSET (state->y0_orig, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->k1nu, dim); DBL_ZERO_MEMSET (state->k2nu, dim); DBL_ZERO_MEMSET (state->ytmp1, dim); DBL_ZERO_MEMSET (state->ytmp2, dim); return GSL_SUCCESS; } static unsigned int rk4imp_order (void *vstate) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 4; } static void rk4imp_free (void *vstate) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; free (state->y_onestep); free (state->y0_orig); free (state->y0); free (state->k1nu); free (state->k2nu); free (state->ytmp1); free (state->ytmp2); free (state); } static const gsl_odeiv_step_type rk4imp_type = { "rk4imp", /* name */ 1, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &rk4imp_alloc, &rk4imp_apply, &rk4imp_reset, &rk4imp_order, &rk4imp_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk4imp = &rk4imp_type;