/* ode-initval/rk4.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 4th order, Classical */ /* Author: G. Jungman */ /* Reference: Abramowitz & Stegun, section 25.5. equation 25.5.10 Error estimation by step doubling, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. */ #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *k; double *k1; double *y0; double *ytmp; double *y_onestep; } rk4_state_t; static void * rk4_alloc (size_t dim) { rk4_state_t *state = (rk4_state_t *) malloc (sizeof (rk4_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk4_state", GSL_ENOMEM); } state->k = (double *) malloc (dim * sizeof (double)); if (state->k == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state->k); free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y0); free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->ytmp); free (state->y0); free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rk4_step (double *y, const rk4_state_t *state, const double h, const double t, const size_t dim, const gsl_odeiv_system *sys) { /* Makes a Runge-Kutta 4th order advance with step size h. */ /* initial values of variables y. */ const double *y0 = state->y0; /* work space */ double *ytmp = state->ytmp; /* Runge-Kutta coefficients. Contains values of coefficient k1 in the beginning */ double *k = state->k; size_t i; /* k1 step */ for (i = 0; i < dim; i++) { y[i] += h / 6.0 * k[i]; ytmp[i] = y0[i] + 0.5 * h * k[i]; } /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 3.0 * k[i]; ytmp[i] = y0[i] + 0.5 * h * k[i]; } /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 3.0 * k[i]; ytmp[i] = y0[i] + h * k[i]; } /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 6.0 * k[i]; } return GSL_SUCCESS; } static int rk4_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk4_state_t *state = (rk4_state_t *) vstate; size_t i; double *const k = state->k; double *const k1 = state->k1; double *const y0 = state->y0; double *const y_onestep = state->y_onestep; DBL_MEMCPY (y0, y, dim); if (dydt_in != NULL) { DBL_MEMCPY (k, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y0, k); if (s != GSL_SUCCESS) { return s; } } /* Error estimation is done by step doubling procedure */ /* Save first point derivatives*/ DBL_MEMCPY (k1, k, dim); /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk4_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ DBL_MEMCPY (k, k1, dim); { int s = rk4_step (y, state, h/2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y0, dim); return s; } } /* Update before second step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h/2.0, y, k); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y0, dim); return s; } } /* Save original y0 to k1 for possible failures */ DBL_MEMCPY (k1, y0, dim); /* Update y0 for second step */ DBL_MEMCPY (y0, y, dim); { int s = rk4_step (y, state, h/2.0, t + h/2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, k1, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, k1, dim); return s; } } /* Error estimation yerr = C * 0.5 * | y(onestep) - y(twosteps) | / (2^order - 1) constant C is approximately 8.0 to ensure 90% of samples lie within the error (assuming a gaussian distribution with prior p(sigma)=1/sigma.) */ for (i = 0; i < dim; i++) { yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 15.0; } return GSL_SUCCESS; } static int rk4_reset (void *vstate, size_t dim) { rk4_state_t *state = (rk4_state_t *) vstate; DBL_ZERO_MEMSET (state->k, dim); DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y_onestep, dim); return GSL_SUCCESS; } static unsigned int rk4_order (void *vstate) { rk4_state_t *state = (rk4_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 4; } static void rk4_free (void *vstate) { rk4_state_t *state = (rk4_state_t *) vstate; free (state->k); free (state->k1); free (state->y0); free (state->ytmp); free (state->y_onestep); free (state); } static const gsl_odeiv_step_type rk4_type = { "rk4", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk4_alloc, &rk4_apply, &rk4_reset, &rk4_order, &rk4_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk4 = &rk4_type;