/* ode-initval/rk2simp.c * * Copyright (C) 2004 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 2, Gaussian implicit. Also known as implicit midpoint rule. Non-linear equations solved by linearization, LU-decomposition and matrix inversion. For reference, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. */ #include #include #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *Y1; double *y0; double *y0_orig; double *ytmp; double *dfdy; /* Jacobian */ double *dfdt; /* time derivatives, not used */ double *y_onestep; gsl_permutation *p; } rk2simp_state_t; static void * rk2simp_alloc (size_t dim) { rk2simp_state_t *state = (rk2simp_state_t *) malloc (sizeof (rk2simp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk2simp_state", GSL_ENOMEM); } state->Y1 = (double *) malloc (dim * sizeof (double)); if (state->Y1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for Y1", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->Y1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->y0_orig = (double *) malloc (dim * sizeof (double)); if (state->y0_orig == 0) { free (state->Y1); free (state->y0); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->dfdy = (double *) malloc (dim * dim * sizeof (double)); if (state->dfdy == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM); } state->dfdt = (double *) malloc (dim * sizeof (double)); if (state->dfdt == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state->dfdy); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state->dfdy); free (state->dfdt); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->p = gsl_permutation_alloc (dim); if (state->p == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state->dfdy); free (state->dfdt); free (state->y_onestep); free (state); GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM); } return state; } static int rk2simp_step (double *y, rk2simp_state_t * state, const double h, const double t, const size_t dim, const gsl_odeiv_system * sys) { /* Makes a Runge-Kutta 2nd order semi-implicit advance with step size h. y0 is initial values of variables y. The linearized semi-implicit equations to calculate are: Y1 = y0 + h/2 * (1 - h/2 * df/dy)^(-1) * f(t + h/2, y0) y = y0 + h * f(t + h/2, Y1) */ const double *y0 = state->y0; double *Y1 = state->Y1; double *ytmp = state->ytmp; size_t i; int s, ps; gsl_matrix_view J = gsl_matrix_view_array (state->dfdy, dim, dim); /* First solve Y1. Calculate the inverse matrix (1 - h/2 * df/dy)^-1 */ /* Create matrix to J */ s = GSL_ODEIV_JA_EVAL (sys, t, y0, state->dfdy, state->dfdt); if (s != GSL_SUCCESS) { return s; } gsl_matrix_scale (&J.matrix, -h / 2.0); gsl_matrix_add_diagonal(&J.matrix, 1.0); /* Invert it by LU-decomposition to invmat */ s += gsl_linalg_LU_decomp (&J.matrix, state->p, &ps); if (s != GSL_SUCCESS) { return GSL_EFAILED; } /* Evaluate f(t + h/2, y0) */ s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, y0, ytmp); if (s != GSL_SUCCESS) { return s; } /* Calculate Y1 = y0 + h/2 * ((1-h/2 * df/dy)^-1) ytmp */ { gsl_vector_const_view y0_view = gsl_vector_const_view_array(y0, dim); gsl_vector_view ytmp_view = gsl_vector_view_array(ytmp, dim); gsl_vector_view Y1_view = gsl_vector_view_array(Y1, dim); s = gsl_linalg_LU_solve (&J.matrix, state->p, &ytmp_view.vector, &Y1_view.vector); gsl_vector_scale (&Y1_view.vector, 0.5 * h); gsl_vector_add (&Y1_view.vector, &y0_view.vector); } /* And finally evaluation of f(t + h/2, Y1) and calculation of y */ s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, Y1, ytmp); if (s != GSL_SUCCESS) { return s; } for (i = 0; i < dim; i++) { y[i] = y0[i] + h * ytmp[i]; } return s; } static int rk2simp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk2simp_state_t *state = (rk2simp_state_t *) vstate; size_t i; double *y0 = state->y0; double *y0_orig = state->y0_orig; double *y_onestep = state->y_onestep; /* Error estimation is done by step doubling procedure */ DBL_MEMCPY (y0, y, dim); /* Save initial values in case of failure */ DBL_MEMCPY (y0_orig, y, dim); /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk2simp_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ { int s = rk2simp_step (y, state, h / 2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (y0, y, dim); { int s = rk2simp_step (y, state, h / 2.0, t + h / 2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Error estimation */ for (i = 0; i < dim; i++) { yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 3.0; } return GSL_SUCCESS; } static int rk2simp_reset (void *vstate, size_t dim) { rk2simp_state_t *state = (rk2simp_state_t *) vstate; DBL_ZERO_MEMSET (state->Y1, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->y0_orig, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->dfdt, dim * dim); DBL_ZERO_MEMSET (state->dfdt, dim); DBL_ZERO_MEMSET (state->y_onestep, dim); return GSL_SUCCESS; } static unsigned int rk2simp_order (void *vstate) { rk2simp_state_t *state = (rk2simp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 2; } static void rk2simp_free (void *vstate) { rk2simp_state_t *state = (rk2simp_state_t *) vstate; free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state->dfdy); free (state->dfdt); free (state->y_onestep); gsl_permutation_free (state->p); free (state); } static const gsl_odeiv_step_type rk2simp_type = { "rk2simp", /* name */ 0, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &rk2simp_alloc, &rk2simp_apply, &rk2simp_reset, &rk2simp_order, &rk2simp_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp = &rk2simp_type;