/* ode-initval/rk2imp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 2, Gaussian implicit. Also known as the implicit midpoint rule. */ /* Author: G. Jungman */ /* Error estimation by step doubling, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. The method is also described in eg. this reference. */ #include #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *Y1; double *y0; double *ytmp; double *y_onestep; double *y0_orig; } rk2imp_state_t; static void * rk2imp_alloc (size_t dim) { rk2imp_state_t *state = (rk2imp_state_t *) malloc (sizeof (rk2imp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk2imp_state", GSL_ENOMEM); } state->Y1 = (double *) malloc (dim * sizeof (double)); if (state->Y1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for Y1", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->Y1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->Y1); free (state->ytmp); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->Y1); free (state->ytmp); free (state->y0); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->y0_orig = (double *) malloc (dim * sizeof (double)); if (state->y0_orig == 0) { free (state->y_onestep); free (state->Y1); free (state->ytmp); free (state->y0); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } return state; } static int rk2imp_step (double *y, rk2imp_state_t *state, const double h, const double t, const size_t dim, const gsl_odeiv_system *sys) { /* Makes a Runge-Kutta 2nd order implicit advance with step size h. y0 is initial values of variables y. The implicit matrix equations to solve are: Y1 = y0 + h/2 * f(t + h/2, Y1) y = y0 + h * f(t + h/2, Y1) */ const double *y0 = state->y0; double *Y1 = state->Y1; double *ytmp = state->ytmp; int max_iter=3; int nu; size_t i; /* iterative solution of Y1 = y0 + h/2 * f(t + h/2, Y1) Y1 should include initial values at call. Note: This method does not check for convergence of the iterative solution! */ for (nu = 0; nu < max_iter; nu++) { for (i = 0; i < dim; i++) { ytmp[i] = y0[i] + 0.5 * h * Y1[i]; } { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, Y1); if (s != GSL_SUCCESS) { return s; } } } /* assignment */ for (i = 0; i < dim; i++) { y[i] = y0[i] + h * Y1[i]; } return GSL_SUCCESS; } static int rk2imp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; size_t i; double *Y1 = state->Y1; double *y0 = state->y0; double *y_onestep = state->y_onestep; double *y0_orig = state->y0_orig; /* Error estimation is done by step doubling procedure */ /* initialization step */ DBL_MEMCPY (y0, y, dim); /* Save initial values for possible failures */ DBL_MEMCPY (y0_orig, y, dim); if (dydt_in != NULL) { DBL_MEMCPY (Y1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, Y1); if (s != GSL_SUCCESS) { return s; } } /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk2imp_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ { int s = rk2imp_step (y, state, h / 2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (y0, y, dim); { int s = GSL_ODEIV_FN_EVAL (sys, t + h / 2.0, y, Y1); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } { int s = rk2imp_step (y, state, h / 2.0, t + h / 2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Error estimation */ for (i = 0; i < dim; i++) { yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 3.0; } return GSL_SUCCESS; } static int rk2imp_reset (void *vstate, size_t dim) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; DBL_ZERO_MEMSET (state->Y1, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->y_onestep, dim); DBL_ZERO_MEMSET (state->y0_orig, dim); return GSL_SUCCESS; } static unsigned int rk2imp_order (void *vstate) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 2; } static void rk2imp_free (void *vstate) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; free (state->Y1); free (state->ytmp); free (state->y0); free (state->y_onestep); free (state->y0_orig); free (state); } static const gsl_odeiv_step_type rk2imp_type = { "rk2imp", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk2imp_alloc, &rk2imp_apply, &rk2imp_reset, &rk2imp_order, &rk2imp_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk2imp = &rk2imp_type;