/* ode-initval/bsimp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Bulirsch-Stoer Implicit */ /* Author: G. Jungman */ /* Bader-Deuflhard implicit extrapolative stepper. * [Numer. Math., 41, 373 (1983)] */ #include #include #include #include #include #include #include #include "odeiv_util.h" #define SEQUENCE_COUNT 8 #define SEQUENCE_MAX 7 /* Bader-Deuflhard extrapolation sequence */ static const int bd_sequence[SEQUENCE_COUNT] = { 2, 6, 10, 14, 22, 34, 50, 70 }; typedef struct { gsl_matrix *d; /* workspace for extrapolation */ gsl_matrix *a_mat; /* workspace for linear system matrix */ gsl_permutation *p_vec; /* workspace for LU permutation */ double x[SEQUENCE_MAX]; /* workspace for extrapolation */ /* state info */ size_t k_current; size_t k_choice; double h_next; double eps; /* workspace for extrapolation step */ double *yp; double *y_save; double *yerr_save; double *y_extrap_save; double *y_extrap_sequence; double *extrap_work; double *dfdt; double *y_temp; double *delta_temp; double *weight; gsl_matrix *dfdy; /* workspace for the basic stepper */ double *rhs_temp; double *delta; /* order of last step */ size_t order; } bsimp_state_t; /* Compute weighting factor */ static void compute_weights (const double y[], double w[], size_t dim) { size_t i; for (i = 0; i < dim; i++) { double u = fabs(y[i]); w[i] = (u > 0.0) ? u : 1.0; } } /* Calculate a choice for the "order" of the method, using the * Deuflhard criteria. */ static size_t bsimp_deuf_kchoice (double eps, size_t dimension) { const double safety_f = 0.25; const double small_eps = safety_f * eps; double a_work[SEQUENCE_COUNT]; double alpha[SEQUENCE_MAX][SEQUENCE_MAX]; int i, k; a_work[0] = bd_sequence[0] + 1.0; for (k = 0; k < SEQUENCE_MAX; k++) { a_work[k + 1] = a_work[k] + bd_sequence[k + 1]; } for (i = 0; i < SEQUENCE_MAX; i++) { alpha[i][i] = 1.0; for (k = 0; k < i; k++) { const double tmp1 = a_work[k + 1] - a_work[i + 1]; const double tmp2 = (a_work[i + 1] - a_work[0] + 1.0) * (2 * k + 1); alpha[k][i] = pow (small_eps, tmp1 / tmp2); } } a_work[0] += dimension; for (k = 0; k < SEQUENCE_MAX; k++) { a_work[k + 1] = a_work[k] + bd_sequence[k + 1]; } for (k = 0; k < SEQUENCE_MAX - 1; k++) { if (a_work[k + 2] > a_work[k + 1] * alpha[k][k + 1]) break; } return k; } static void poly_extrap (gsl_matrix * d, const double x[], const unsigned int i_step, const double x_i, const double y_i[], double y_0[], double y_0_err[], double work[], const size_t dim) { size_t j, k; DBL_MEMCPY (y_0_err, y_i, dim); DBL_MEMCPY (y_0, y_i, dim); if (i_step == 0) { for (j = 0; j < dim; j++) { gsl_matrix_set (d, 0, j, y_i[j]); } } else { DBL_MEMCPY (work, y_i, dim); for (k = 0; k < i_step; k++) { double delta = 1.0 / (x[i_step - k - 1] - x_i); const double f1 = delta * x_i; const double f2 = delta * x[i_step - k - 1]; for (j = 0; j < dim; j++) { const double q_kj = gsl_matrix_get (d, k, j); gsl_matrix_set (d, k, j, y_0_err[j]); delta = work[j] - q_kj; y_0_err[j] = f1 * delta; work[j] = f2 * delta; y_0[j] += y_0_err[j]; } } for (j = 0; j < dim; j++) { gsl_matrix_set (d, i_step, j, y_0_err[j]); } } } /* Basic implicit Bulirsch-Stoer step. Divide the step h_total into * n_step smaller steps and do the Bader-Deuflhard semi-implicit * iteration. */ static int bsimp_step_local (void *vstate, size_t dim, const double t0, const double h_total, const unsigned int n_step, const double y[], const double yp[], const double dfdt[], const gsl_matrix * dfdy, double y_out[], const gsl_odeiv_system * sys) { bsimp_state_t *state = (bsimp_state_t *) vstate; gsl_matrix *const a_mat = state->a_mat; gsl_permutation *const p_vec = state->p_vec; double *const delta = state->delta; double *const y_temp = state->y_temp; double *const delta_temp = state->delta_temp; double *const rhs_temp = state->rhs_temp; double *const w = state->weight; gsl_vector_view y_temp_vec = gsl_vector_view_array (y_temp, dim); gsl_vector_view delta_temp_vec = gsl_vector_view_array (delta_temp, dim); gsl_vector_view rhs_temp_vec = gsl_vector_view_array (rhs_temp, dim); const double h = h_total / n_step; double t = t0 + h; double sum; /* This is the factor sigma referred to in equation 3.4 of the paper. A relative change in y exceeding sigma indicates a runaway behavior. According to the authors suitable values for sigma are >>1. I have chosen a value of 100*dim. BJG */ const double max_sum = 100.0 * dim; int signum, status; size_t i, j; size_t n_inter; /* Calculate the matrix for the linear system. */ for (i = 0; i < dim; i++) { for (j = 0; j < dim; j++) { gsl_matrix_set (a_mat, i, j, -h * gsl_matrix_get (dfdy, i, j)); } gsl_matrix_set (a_mat, i, i, gsl_matrix_get (a_mat, i, i) + 1.0); } /* LU decomposition for the linear system. */ gsl_linalg_LU_decomp (a_mat, p_vec, &signum); /* Compute weighting factors */ compute_weights (y, w, dim); /* Initial step. */ for (i = 0; i < dim; i++) { y_temp[i] = h * (yp[i] + h * dfdt[i]); } gsl_linalg_LU_solve (a_mat, p_vec, &y_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { const double di = delta_temp[i]; delta[i] = di; y_temp[i] = y[i] + di; sum += fabs(di) / w[i]; } if (sum > max_sum) { return GSL_EFAILED ; } /* Intermediate steps. */ status = GSL_ODEIV_FN_EVAL (sys, t, y_temp, y_out); if (status) { return status; } for (n_inter = 1; n_inter < n_step; n_inter++) { for (i = 0; i < dim; i++) { rhs_temp[i] = h * y_out[i] - delta[i]; } gsl_linalg_LU_solve (a_mat, p_vec, &rhs_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { delta[i] += 2.0 * delta_temp[i]; y_temp[i] += delta[i]; sum += fabs(delta[i]) / w[i]; } if (sum > max_sum) { return GSL_EFAILED ; } t += h; status = GSL_ODEIV_FN_EVAL (sys, t, y_temp, y_out); if (status) { return status; } } /* Final step. */ for (i = 0; i < dim; i++) { rhs_temp[i] = h * y_out[i] - delta[i]; } gsl_linalg_LU_solve (a_mat, p_vec, &rhs_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { y_out[i] = y_temp[i] + delta_temp[i]; sum += fabs(delta_temp[i]) / w[i]; } if (sum > max_sum) { return GSL_EFAILED ; } return GSL_SUCCESS; } static void * bsimp_alloc (size_t dim) { bsimp_state_t *state = (bsimp_state_t *) malloc (sizeof (bsimp_state_t)); state->d = gsl_matrix_alloc (SEQUENCE_MAX, dim); state->a_mat = gsl_matrix_alloc (dim, dim); state->p_vec = gsl_permutation_alloc (dim); state->yp = (double *) malloc (dim * sizeof (double)); state->y_save = (double *) malloc (dim * sizeof (double)); state->yerr_save = (double *) malloc (dim * sizeof (double)); state->y_extrap_save = (double *) malloc (dim * sizeof (double)); state->y_extrap_sequence = (double *) malloc (dim * sizeof (double)); state->extrap_work = (double *) malloc (dim * sizeof (double)); state->dfdt = (double *) malloc (dim * sizeof (double)); state->y_temp = (double *) malloc (dim * sizeof (double)); state->delta_temp = (double *) malloc (dim * sizeof(double)); state->weight = (double *) malloc (dim * sizeof(double)); state->dfdy = gsl_matrix_alloc (dim, dim); state->rhs_temp = (double *) malloc (dim * sizeof(double)); state->delta = (double *) malloc (dim * sizeof (double)); { size_t k_choice = bsimp_deuf_kchoice (GSL_SQRT_DBL_EPSILON, dim); /*FIXME: choice of epsilon? */ state->k_choice = k_choice; state->k_current = k_choice; state->order = 2 * k_choice; } state->h_next = -GSL_SQRT_DBL_MAX; return state; } /* Perform the basic semi-implicit extrapolation * step, of size h, at a Deuflhard determined order. */ static int bsimp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { bsimp_state_t *state = (bsimp_state_t *) vstate; double *const x = state->x; double *const yp = state->yp; double *const y_save = state->y_save; double *const yerr_save = state->yerr_save; double *const y_extrap_sequence = state->y_extrap_sequence; double *const y_extrap_save = state->y_extrap_save; double *const extrap_work = state->extrap_work; double *const dfdt = state->dfdt; gsl_matrix *d = state->d; gsl_matrix *dfdy = state->dfdy; const double t_local = t; size_t i, k; if (h + t_local == t_local) { return GSL_EUNDRFLW; /* FIXME: error condition */ } DBL_MEMCPY (y_extrap_save, y, dim); /* Save inputs */ DBL_MEMCPY (y_save, y, dim); DBL_MEMCPY (yerr_save, yerr, dim); /* Evaluate the derivative. */ if (dydt_in != NULL) { DBL_MEMCPY (yp, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t_local, y, yp); if (s != GSL_SUCCESS) { return s; } } /* Evaluate the Jacobian for the system. */ { int s = GSL_ODEIV_JA_EVAL (sys, t_local, y, dfdy->data, dfdt); if (s != GSL_SUCCESS) { return s; } } /* Make a series of refined extrapolations, * up to the specified maximum order, which * was calculated based on the Deuflhard * criterion upon state initialization. */ for (k = 0; k <= state->k_current; k++) { const unsigned int N = bd_sequence[k]; const double r = (h / N); const double x_k = r * r; int status = bsimp_step_local (state, dim, t_local, h, N, y_extrap_save, yp, dfdt, dfdy, y_extrap_sequence, sys); if (status == GSL_EFAILED) { /* If the local step fails, set the error to infinity in order to force a reduction in the step size */ for (i = 0; i < dim; i++) { yerr[i] = GSL_POSINF; } break; } else if (status != GSL_SUCCESS) { return status; } x[k] = x_k; poly_extrap (d, x, k, x_k, y_extrap_sequence, y, yerr, extrap_work, dim); } /* Evaluate dydt_out[]. */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { DBL_MEMCPY (y, y_save, dim); DBL_MEMCPY (yerr, yerr_save, dim); return s; } } return GSL_SUCCESS; } static unsigned int bsimp_order (void *vstate) { bsimp_state_t *state = (bsimp_state_t *) vstate; return state->order; } static int bsimp_reset (void *vstate, size_t dim) { bsimp_state_t *state = (bsimp_state_t *) vstate; state->h_next = 0; DBL_ZERO_MEMSET (state->yp, dim); return GSL_SUCCESS; } static void bsimp_free (void * vstate) { bsimp_state_t *state = (bsimp_state_t *) vstate; free (state->delta); free (state->rhs_temp); gsl_matrix_free (state->dfdy); free (state->weight); free (state->delta_temp); free (state->y_temp); free (state->dfdt); free (state->extrap_work); free (state->y_extrap_sequence); free (state->y_extrap_save); free (state->y_save); free (state->yerr_save); free (state->yp); gsl_permutation_free (state->p_vec); gsl_matrix_free (state->a_mat); gsl_matrix_free (state->d); free (state); } static const gsl_odeiv_step_type bsimp_type = { "bsimp", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &bsimp_alloc, &bsimp_apply, &bsimp_reset, &bsimp_order, &bsimp_free }; const gsl_odeiv_step_type *gsl_odeiv_step_bsimp = &bsimp_type;