/* roots/brent.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* brent.c -- brent root finding algorithm */ #include #include #include #include #include #include #include #include #include #include "roots.h" typedef struct { double a, b, c, d, e; double fa, fb, fc; } brent_state_t; static int brent_init (void * vstate, gsl_function * f, double * root, double x_lower, double x_upper); static int brent_iterate (void * vstate, gsl_function * f, double * root, double * x_lower, double * x_upper); static int brent_init (void * vstate, gsl_function * f, double * root, double x_lower, double x_upper) { brent_state_t * state = (brent_state_t *) vstate; double f_lower, f_upper ; *root = 0.5 * (x_lower + x_upper) ; SAFE_FUNC_CALL (f, x_lower, &f_lower); SAFE_FUNC_CALL (f, x_upper, &f_upper); state->a = x_lower; state->fa = f_lower; state->b = x_upper; state->fb = f_upper; state->c = x_upper; state->fc = f_upper; state->d = x_upper - x_lower ; state->e = x_upper - x_lower ; if ((f_lower < 0.0 && f_upper < 0.0) || (f_lower > 0.0 && f_upper > 0.0)) { GSL_ERROR ("endpoints do not straddle y=0", GSL_EINVAL); } return GSL_SUCCESS; } static int brent_iterate (void * vstate, gsl_function * f, double * root, double * x_lower, double * x_upper) { brent_state_t * state = (brent_state_t *) vstate; double tol, m; int ac_equal = 0; double a = state->a, b = state->b, c = state->c; double fa = state->fa, fb = state->fb, fc = state->fc; double d = state->d, e = state->e; if ((fb < 0 && fc < 0) || (fb > 0 && fc > 0)) { ac_equal = 1; c = a; fc = fa; d = b - a; e = b - a; } if (fabs (fc) < fabs (fb)) { ac_equal = 1; a = b; b = c; c = a; fa = fb; fb = fc; fc = fa; } tol = 0.5 * GSL_DBL_EPSILON * fabs (b); m = 0.5 * (c - b); if (fb == 0) { *root = b; *x_lower = b; *x_upper = b; return GSL_SUCCESS; } if (fabs (m) <= tol) { *root = b; if (b < c) { *x_lower = b; *x_upper = c; } else { *x_lower = c; *x_upper = b; } return GSL_SUCCESS; } if (fabs (e) < tol || fabs (fa) <= fabs (fb)) { d = m; /* use bisection */ e = m; } else { double p, q, r; /* use inverse cubic interpolation */ double s = fb / fa; if (ac_equal) { p = 2 * m * s; q = 1 - s; } else { q = fa / fc; r = fb / fc; p = s * (2 * m * q * (q - r) - (b - a) * (r - 1)); q = (q - 1) * (r - 1) * (s - 1); } if (p > 0) { q = -q; } else { p = -p; } if (2 * p < GSL_MIN (3 * m * q - fabs (tol * q), fabs (e * q))) { e = d; d = p / q; } else { /* interpolation failed, fall back to bisection */ d = m; e = m; } } a = b; fa = fb; if (fabs (d) > tol) { b += d; } else { b += (m > 0 ? +tol : -tol); } SAFE_FUNC_CALL (f, b, &fb); state->a = a ; state->b = b ; state->c = c ; state->d = d ; state->e = e ; state->fa = fa ; state->fb = fb ; state->fc = fc ; /* Update the best estimate of the root and bounds on each iteration */ *root = b; if ((fb < 0 && fc < 0) || (fb > 0 && fc > 0)) { c = a; } if (b < c) { *x_lower = b; *x_upper = c; } else { *x_lower = c; *x_upper = b; } return GSL_SUCCESS ; } static const gsl_root_fsolver_type brent_type = {"brent", /* name */ sizeof (brent_state_t), &brent_init, &brent_iterate}; const gsl_root_fsolver_type * gsl_root_fsolver_brent = &brent_type;