/* Author: G. Jungman */ /* Implementation for Sobol generator. * See * [Bratley+Fox, TOMS 14, 88 (1988)] * [Antonov+Saleev, USSR Comput. Maths. Math. Phys. 19, 252 (1980)] */ #include #include /* maximum allowed space dimension */ #define SOBOL_MAX_DIMENSION 40 /* bit count; assumes sizeof(int) >= 32-bit */ #define SOBOL_BIT_COUNT 30 /* prototypes for generator type functions */ static size_t sobol_state_size(unsigned int dimension); static int sobol_init(void * state, unsigned int dimension); static int sobol_get(void * state, unsigned int dimension, double * v); /* global Sobol generator type object */ static const gsl_qrng_type sobol_type = { "sobol", SOBOL_MAX_DIMENSION, sobol_state_size, sobol_init, sobol_get }; const gsl_qrng_type * gsl_qrng_sobol = &sobol_type; /* primitive polynomials in binary encoding */ static const int primitive_polynomials[SOBOL_MAX_DIMENSION] = { 1, 3, 7, 11, 13, 19, 25, 37, 59, 47, 61, 55, 41, 67, 97, 91, 109, 103, 115, 131, 193, 137, 145, 143, 241, 157, 185, 167, 229, 171, 213, 191, 253, 203, 211, 239, 247, 285, 369, 299 }; /* degrees of the primitive polynomials */ static const int degree_table[SOBOL_MAX_DIMENSION] = { 0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8 }; /* initial values for direction tables, following * Bratley+Fox, taken from [Sobol+Levitan, preprint 1976] */ static const int v_init[8][SOBOL_MAX_DIMENSION] = { { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 0, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3 }, { 0, 0, 0, 7, 5, 1, 3, 3, 7, 5, 5, 7, 7, 1, 3, 3, 7, 5, 1, 1, 5, 3, 3, 1, 7, 5, 1, 3, 3, 7, 5, 1, 1, 5, 7, 7, 5, 1, 3, 3 }, { 0, 0, 0, 0, 0, 1, 7, 9, 13, 11, 1, 3, 7, 9, 5, 13, 13, 11, 3, 15, 5, 3, 15, 7, 9, 13, 9, 1, 11, 7, 5, 15, 1, 15, 11, 5, 3, 1, 7, 9 }, { 0, 0, 0, 0, 0, 0, 0, 9, 3, 27, 15, 29, 21, 23, 19, 11, 25, 7, 13, 17, 1, 25, 29, 3, 31, 11, 5, 23, 27, 19, 21, 5, 1, 17, 13, 7, 15, 9, 31, 9 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 33, 7, 5, 11, 39, 63, 27, 17, 15, 23, 29, 3, 21, 13, 31, 25, 9, 49, 33, 19, 29, 11, 19, 27, 15, 25 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 33, 115, 41, 79, 17, 29, 119, 75, 73, 105, 7, 59, 65, 21, 3, 113, 61, 89, 45, 107 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 23, 39 } }; /* Sobol generator state. * sequence_count = number of calls with this generator * last_numerator_vec = last generated numerator vector * last_denominator_inv = 1/denominator for last numerator vector * v_direction = direction number table */ typedef struct { unsigned int sequence_count; double last_denominator_inv; int last_numerator_vec[SOBOL_MAX_DIMENSION]; int v_direction[SOBOL_BIT_COUNT][SOBOL_MAX_DIMENSION]; } sobol_state_t; /* NOTE: I fixed the size for the preliminary implementation. This could/should be relaxed, as an optimization. */ static size_t sobol_state_size(unsigned int dimension) { return sizeof(sobol_state_t); } static int sobol_init(void * state, unsigned int dimension) { sobol_state_t * s_state = (sobol_state_t *) state; unsigned int i_dim; int j, k; int ell; if(dimension < 1 || dimension > SOBOL_MAX_DIMENSION) { return GSL_EINVAL; } /* Initialize direction table in dimension 0. */ for(k=0; kv_direction[k][0] = 1; /* Initialize in remaining dimensions. */ for(i_dim=1; i_dim= 0; k--) { includ[k] = ((p_i % 2) == 1); p_i /= 2; } /* Leading elements for dimension i come from v_init[][]. */ for(j=0; jv_direction[j][i_dim] = v_init[j][i_dim]; /* Calculate remaining elements for this dimension, * as explained in Bratley+Fox, section 2. */ for(j=degree_i; jv_direction[j-degree_i][i_dim]; ell = 1; for(k=0; kv_direction[j-k-1][i_dim]); } s_state->v_direction[j][i_dim] = newv; } } /* Multiply columns of v by appropriate power of 2. */ ell = 1; for(j=SOBOL_BIT_COUNT-1-1; j>=0; j--) { ell *= 2; for(i_dim=0; i_dimv_direction[j][i_dim] *= ell; } } /* 1/(common denominator of the elements in v_direction) */ s_state->last_denominator_inv = 1.0 /(2.0 * ell); /* final setup */ s_state->sequence_count = 0; for(i_dim=0; i_dimlast_numerator_vec[i_dim] = 0; return GSL_SUCCESS; } static int sobol_get(void * state, unsigned int dimension, double * v) { sobol_state_t * s_state = (sobol_state_t *) state; unsigned int i_dimension; /* Find the position of the least-significant zero in count. */ int ell = 0; int c = s_state->sequence_count; while(1) { ++ell; if((c % 2) == 1) c /= 2; else break; } /* Check for exhaustion. */ if(ell > SOBOL_BIT_COUNT) return GSL_EFAILED; /* FIXME: good return code here */ for(i_dimension=0; i_dimensionv_direction[ell-1][i_dimension]; const int old_numerator_i = s_state->last_numerator_vec[i_dimension]; const int new_numerator_i = old_numerator_i ^ direction_i; s_state->last_numerator_vec[i_dimension] = new_numerator_i; v[i_dimension] = new_numerator_i * s_state->last_denominator_inv; } s_state->sequence_count++; return GSL_SUCCESS; }