/* specfunc/legendre_P.c * * Copyright (C) 2009-2013 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* * The routines in this module compute associated Legendre functions * (ALFs) up to order and degree 2700, using the method described * in * * [1] S. A. Holmes and W. E. Featherstone, A unified approach * to the Clenshaw summation and the recursive computation of very * high degree and order normalised associated Legendre functions, * Journal of Geodesy, 76, pg. 279-299, 2002. * * Further information on ALFs can be found in * * [2] Abramowitz and Stegun, Handbook of Mathematical Functions, * Chapter 8, 1972. */ static void legendre_sqrts(const size_t lmax, double *array); #define LEGENDRE #include "legendre_source.c" #undef LEGENDRE #define LEGENDRE_DERIV #include "legendre_source.c" #undef LEGENDRE_DERIV #define LEGENDRE_DERIV_ALT #include "legendre_source.c" #undef LEGENDRE_DERIV_ALT #define LEGENDRE_DERIV2 #include "legendre_source.c" #undef LEGENDRE_DERIV2 #define LEGENDRE_DERIV2_ALT #include "legendre_source.c" #undef LEGENDRE_DERIV2_ALT /* number of P_{lm} functions for a given lmax */ size_t gsl_sf_legendre_nlm(const size_t lmax) { return ((lmax + 1) * (lmax + 2) / 2); } /* gsl_sf_legendre_array_n() This routine returns the minimum result_array[] size needed for a given lmax */ size_t gsl_sf_legendre_array_n(const size_t lmax) { size_t nlm = gsl_sf_legendre_nlm(lmax); size_t nsqrt = 2 * lmax + 2; /* extra room to precompute sqrt factors */ return (nlm + nsqrt); } /* gsl_sf_legendre_array_n() */ /* gsl_sf_legendre_array_index() This routine computes the index into a result_array[] corresponding to a given (l,m) */ size_t gsl_sf_legendre_array_index(const size_t l, const size_t m) { return (l * (l + 1) / 2 + m); } /* gsl_sf_legendre_array_index() */ /********************************************************* * INTERNAL ROUTINES * *********************************************************/ /* legendre_sqrts() Precompute square root factors needed for Legendre recurrence. On output, array[i] = sqrt(i) */ static void legendre_sqrts(const size_t lmax, double *array) { size_t l; for (l = 0; l <= 2 * lmax + 1; ++l) array[l] = sqrt((double) l); }