/* specfunc/erfc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: J. Theiler (modifications by G. Jungman) */ /* * See Hart et al, Computer Approximations, John Wiley and Sons, New York (1968) * (This applies only to the erfc8 stuff, which is the part * of the original code that survives. I have replaced much of * the other stuff with Chebyshev fits. These are simpler and * more precise than the original approximations. [GJ]) */ #include #include #include #include #include #include "check.h" #include "chebyshev.h" #include "cheb_eval.c" #define LogRootPi_ 0.57236494292470008706 static double erfc8_sum(double x) { /* estimates erfc(x) valid for 8 < x < 100 */ /* This is based on index 5725 in Hart et al */ static double P[] = { 2.97886562639399288862, 7.409740605964741794425, 6.1602098531096305440906, 5.019049726784267463450058, 1.275366644729965952479585264, 0.5641895835477550741253201704 }; static double Q[] = { 3.3690752069827527677, 9.608965327192787870698, 17.08144074746600431571095, 12.0489519278551290360340491, 9.396034016235054150430579648, 2.260528520767326969591866945, 1.0 }; double num=0.0, den=0.0; int i; num = P[5]; for (i=4; i>=0; --i) { num = x*num + P[i]; } den = Q[6]; for (i=5; i>=0; --i) { den = x*den + Q[i]; } return num/den; } inline static double erfc8(double x) { double e; e = erfc8_sum(x); e *= exp(-x*x); return e; } inline static double log_erfc8(double x) { double e; e = erfc8_sum(x); e = log(e) - x*x; return e; } #if 0 /* Abramowitz+Stegun, 7.2.14 */ static double erfcasympsum(double x) { int i; double e = 1.; double coef = 1.; for (i=1; i<5; ++i) { /* coef *= -(2*i-1)/(2*x*x); ??? [GJ] */ coef *= -(2*i+1)/(i*(4*x*x*x*x)); e += coef; /* if (fabs(coef) < 1.0e-15) break; if (fabs(coef) > 1.0e10) break; [GJ]: These tests are not useful. This function is only used below. Took them out; they gum up the pipeline. */ } return e; } #endif /* 0 */ /* Abramowitz+Stegun, 7.1.5 */ static int erfseries(double x, gsl_sf_result * result) { double coef = x; double e = coef; double del; int k; for (k=1; k<30; ++k) { coef *= -x*x/k; del = coef/(2.0*k+1.0); e += del; } result->val = 2.0 / M_SQRTPI * e; result->err = 2.0 / M_SQRTPI * (fabs(del) + GSL_DBL_EPSILON); return GSL_SUCCESS; } /* Chebyshev fit for erfc((t+1)/2), -1 < t < 1 */ static double erfc_xlt1_data[20] = { 1.06073416421769980345174155056, -0.42582445804381043569204735291, 0.04955262679620434040357683080, 0.00449293488768382749558001242, -0.00129194104658496953494224761, -0.00001836389292149396270416979, 0.00002211114704099526291538556, -5.23337485234257134673693179020e-7, -2.78184788833537885382530989578e-7, 1.41158092748813114560316684249e-8, 2.72571296330561699984539141865e-9, -2.06343904872070629406401492476e-10, -2.14273991996785367924201401812e-11, 2.22990255539358204580285098119e-12, 1.36250074650698280575807934155e-13, -1.95144010922293091898995913038e-14, -6.85627169231704599442806370690e-16, 1.44506492869699938239521607493e-16, 2.45935306460536488037576200030e-18, -9.29599561220523396007359328540e-19 }; static cheb_series erfc_xlt1_cs = { erfc_xlt1_data, 19, -1, 1, 12 }; /* Chebyshev fit for erfc(x) exp(x^2), 1 < x < 5, x = 2t + 3, -1 < t < 1 */ static double erfc_x15_data[25] = { 0.44045832024338111077637466616, -0.143958836762168335790826895326, 0.044786499817939267247056666937, -0.013343124200271211203618353102, 0.003824682739750469767692372556, -0.001058699227195126547306482530, 0.000283859419210073742736310108, -0.000073906170662206760483959432, 0.000018725312521489179015872934, -4.62530981164919445131297264430e-6, 1.11558657244432857487884006422e-6, -2.63098662650834130067808832725e-7, 6.07462122724551777372119408710e-8, -1.37460865539865444777251011793e-8, 3.05157051905475145520096717210e-9, -6.65174789720310713757307724790e-10, 1.42483346273207784489792999706e-10, -3.00141127395323902092018744545e-11, 6.22171792645348091472914001250e-12, -1.26994639225668496876152836555e-12, 2.55385883033257575402681845385e-13, -5.06258237507038698392265499770e-14, 9.89705409478327321641264227110e-15, -1.90685978789192181051961024995e-15, 3.50826648032737849245113757340e-16 }; static cheb_series erfc_x15_cs = { erfc_x15_data, 24, -1, 1, 16 }; /* Chebyshev fit for erfc(x) x exp(x^2), 5 < x < 10, x = (5t + 15)/2, -1 < t < 1 */ static double erfc_x510_data[20] = { 1.11684990123545698684297865808, 0.003736240359381998520654927536, -0.000916623948045470238763619870, 0.000199094325044940833965078819, -0.000040276384918650072591781859, 7.76515264697061049477127605790e-6, -1.44464794206689070402099225301e-6, 2.61311930343463958393485241947e-7, -4.61833026634844152345304095560e-8, 8.00253111512943601598732144340e-9, -1.36291114862793031395712122089e-9, 2.28570483090160869607683087722e-10, -3.78022521563251805044056974560e-11, 6.17253683874528285729910462130e-12, -9.96019290955316888445830597430e-13, 1.58953143706980770269506726000e-13, -2.51045971047162509999527428316e-14, 3.92607828989125810013581287560e-15, -6.07970619384160374392535453420e-16, 9.12600607264794717315507477670e-17 }; static cheb_series erfc_x510_cs = { erfc_x510_data, 19, -1, 1, 12 }; #if 0 inline static double erfc_asymptotic(double x) { return exp(-x*x)/x * erfcasympsum(x) / M_SQRTPI; } inline static double log_erfc_asymptotic(double x) { return log(erfcasympsum(x)/x) - x*x - LogRootPi_; } #endif /* 0 */ /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_erfc_e(double x, gsl_sf_result * result) { const double ax = fabs(x); double e_val, e_err; /* CHECK_POINTER(result) */ if(ax <= 1.0) { double t = 2.0*ax - 1.0; gsl_sf_result c; cheb_eval_e(&erfc_xlt1_cs, t, &c); e_val = c.val; e_err = c.err; } else if(ax <= 5.0) { double ex2 = exp(-x*x); double t = 0.5*(ax-3.0); gsl_sf_result c; cheb_eval_e(&erfc_x15_cs, t, &c); e_val = ex2 * c.val; e_err = ex2 * (c.err + 2.0*fabs(x)*GSL_DBL_EPSILON); } else if(ax < 10.0) { double exterm = exp(-x*x) / ax; double t = (2.0*ax - 15.0)/5.0; gsl_sf_result c; cheb_eval_e(&erfc_x510_cs, t, &c); e_val = exterm * c.val; e_err = exterm * (c.err + 2.0*fabs(x)*GSL_DBL_EPSILON + GSL_DBL_EPSILON); } else { e_val = erfc8(ax); e_err = (x*x + 1.0) * GSL_DBL_EPSILON * fabs(e_val); } if(x < 0.0) { result->val = 2.0 - e_val; result->err = e_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } else { result->val = e_val; result->err = e_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } return GSL_SUCCESS; } int gsl_sf_log_erfc_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x*x < 10.0*GSL_ROOT6_DBL_EPSILON) { const double y = x / M_SQRTPI; /* series for -1/2 Log[Erfc[Sqrt[Pi] y]] */ const double c3 = (4.0 - M_PI)/3.0; const double c4 = 2.0*(1.0 - M_PI/3.0); const double c5 = -0.001829764677455021; /* (96.0 - 40.0*M_PI + 3.0*M_PI*M_PI)/30.0 */ const double c6 = 0.02629651521057465; /* 2.0*(120.0 - 60.0*M_PI + 7.0*M_PI*M_PI)/45.0 */ const double c7 = -0.01621575378835404; const double c8 = 0.00125993961762116; const double c9 = 0.00556964649138; const double c10 = -0.0045563339802; const double c11 = 0.0009461589032; const double c12 = 0.0013200243174; const double c13 = -0.00142906; const double c14 = 0.00048204; double series = c8 + y*(c9 + y*(c10 + y*(c11 + y*(c12 + y*(c13 + c14*y))))); series = y*(1.0 + y*(1.0 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*(c7 + y*series))))))); result->val = -2.0 * series; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /* don't like use of log1p(); added above series stuff for small x instead, should be ok [GJ] else if (fabs(x) < 1.0) { gsl_sf_result result_erf; gsl_sf_erf_e(x, &result_erf); result->val = log1p(-result_erf.val); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } */ else if(x > 8.0) { result->val = log_erfc8(x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result result_erfc; gsl_sf_erfc_e(x, &result_erfc); result->val = log(result_erfc.val); result->err = fabs(result_erfc.err / result_erfc.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_erf_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(fabs(x) < 1.0) { return erfseries(x, result); } else { gsl_sf_result result_erfc; gsl_sf_erfc_e(x, &result_erfc); result->val = 1.0 - result_erfc.val; result->err = result_erfc.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_erf_Z_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { const double ex2 = exp(-x*x/2.0); result->val = ex2 / (M_SQRT2 * M_SQRTPI); result->err = fabs(x * result->val) * GSL_DBL_EPSILON; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_erf_Q_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { gsl_sf_result result_erfc; int stat = gsl_sf_erfc_e(x/M_SQRT2, &result_erfc); result->val = 0.5 * result_erfc.val; result->err = 0.5 * result_erfc.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat; } } int gsl_sf_hazard_e(double x, gsl_sf_result * result) { if(x < 25.0) { gsl_sf_result result_ln_erfc; const int stat_l = gsl_sf_log_erfc_e(x/M_SQRT2, &result_ln_erfc); const double lnc = -0.22579135264472743236; /* ln(sqrt(2/pi)) */ const double arg = lnc - 0.5*x*x - result_ln_erfc.val; const int stat_e = gsl_sf_exp_e(arg, result); result->err += 3.0 * (1.0 + fabs(x)) * GSL_DBL_EPSILON * fabs(result->val); result->err += fabs(result_ln_erfc.err * result->val); return GSL_ERROR_SELECT_2(stat_l, stat_e); } else { const double ix2 = 1.0/(x*x); const double corrB = 1.0 - 9.0*ix2 * (1.0 - 11.0*ix2); const double corrM = 1.0 - 5.0*ix2 * (1.0 - 7.0*ix2 * corrB); const double corrT = 1.0 - ix2 * (1.0 - 3.0*ix2*corrM); result->val = x / corrT; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_erfc(double x) { EVAL_RESULT(gsl_sf_erfc_e(x, &result)); } double gsl_sf_log_erfc(double x) { EVAL_RESULT(gsl_sf_log_erfc_e(x, &result)); } double gsl_sf_erf(double x) { EVAL_RESULT(gsl_sf_erf_e(x, &result)); } double gsl_sf_erf_Z(double x) { EVAL_RESULT(gsl_sf_erf_Z_e(x, &result)); } double gsl_sf_erf_Q(double x) { EVAL_RESULT(gsl_sf_erf_Q_e(x, &result)); } double gsl_sf_hazard(double x) { EVAL_RESULT(gsl_sf_hazard_e(x, &result)); }