/* specfunc/bessel_J1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_amp_phase.h" #include "cheb_eval.c" #define ROOT_EIGHT (2.0*M_SQRT2) /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC besj1, 1983 version, w. fullerton */ /* chebyshev expansions series for bj1 on the interval 0. to 1.60000d+01 with weighted error 4.48e-17 log weighted error 16.35 significant figures required 15.77 decimal places required 16.89 */ static double bj1_data[12] = { -0.11726141513332787, -0.25361521830790640, 0.050127080984469569, -0.004631514809625081, 0.000247996229415914, -0.000008678948686278, 0.000000214293917143, -0.000000003936093079, 0.000000000055911823, -0.000000000000632761, 0.000000000000005840, -0.000000000000000044, }; static cheb_series bj1_cs = { bj1_data, 11, -1, 1, 8 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_J1_e(const double x, gsl_sf_result * result) { double y = fabs(x); /* CHECK_POINTER(result) */ if(y == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(y < 2.0*GSL_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(y < ROOT_EIGHT * GSL_SQRT_DBL_EPSILON) { result->val = 0.5*x; result->err = 0.0; return GSL_SUCCESS; } else if(y < 4.0) { gsl_sf_result c; cheb_eval_e(&bj1_cs, 0.125*y*y-1.0, &c); result->val = x * (0.25 + c.val); result->err = fabs(x * c.err); return GSL_SUCCESS; } else { /* Because the leading term in the phase is y, * which we assume is exactly known, the error * in the cos() evaluation is bounded. */ const double z = 32.0/(y*y) - 1.0; gsl_sf_result ca; gsl_sf_result ct; gsl_sf_result sp; const int stat_ca = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bm1_cs, z, &ca); const int stat_ct = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bth1_cs, z, &ct); const int stat_sp = gsl_sf_bessel_sin_pi4_e(y, ct.val/y, &sp); const double sqrty = sqrt(y); const double ampl = (0.75 + ca.val) / sqrty; result->val = (x < 0.0 ? -ampl : ampl) * sp.val; result->err = fabs(sp.val) * ca.err/sqrty + fabs(ampl) * sp.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_ca, stat_ct, stat_sp); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_J1(const double x) { EVAL_RESULT(gsl_sf_bessel_J1_e(x, &result)); }