/* multimin/vector_bfgs2.c * * Copyright (C) 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ /* vector_bfgs2.c -- Fletcher's implementation of the BFGS method, using the line minimisation algorithm from from R.Fletcher, "Practical Methods of Optimization", Second Edition, ISBN 0471915475. Algorithms 2.6.2 and 2.6.4. */ /* Thanks to Alan Irwin irwin@beluga.phys.uvic.ca. for suggesting this algorithm and providing sample fortran benchmarks */ #include #include #include #include "linear_minimize.c" #include "linear_wrapper.c" typedef struct { int iter; double step; double g0norm; double pnorm; double delta_f; double fp0; /* f'(0) for f(x-alpha*p) */ gsl_vector *x0; gsl_vector *g0; gsl_vector *p; /* work space */ gsl_vector *dx0; gsl_vector *dg0; gsl_vector *x_alpha; gsl_vector *g_alpha; /* wrapper function */ wrapper_t wrap; /* minimization parameters */ double rho; double sigma; double tau1; double tau2; double tau3; int order; } vector_bfgs2_state_t; static int vector_bfgs2_alloc (void *vstate, size_t n) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; state->p = gsl_vector_calloc (n); if (state->p == 0) { GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM); } state->x0 = gsl_vector_calloc (n); if (state->x0 == 0) { gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->g0 = gsl_vector_calloc (n); if (state->g0 == 0) { gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->dx0 = gsl_vector_calloc (n); if (state->dx0 == 0) { gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->dg0 = gsl_vector_calloc (n); if (state->dg0 == 0) { gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->x_alpha = gsl_vector_calloc (n); if (state->x_alpha == 0) { gsl_vector_free (state->dg0); gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->g_alpha = gsl_vector_calloc (n); if (state->g_alpha == 0) { gsl_vector_free (state->x_alpha); gsl_vector_free (state->dg0); gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } return GSL_SUCCESS; } static int vector_bfgs2_set (void *vstate, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double *f, gsl_vector * gradient, double step_size, double tol) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; state->iter = 0; state->step = step_size; state->delta_f = 0; GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient); /* Use the gradient as the initial direction */ gsl_vector_memcpy (state->x0, x); gsl_vector_memcpy (state->g0, gradient); state->g0norm = gsl_blas_dnrm2 (state->g0); gsl_vector_memcpy (state->p, gradient); gsl_blas_dscal (-1 / state->g0norm, state->p); state->pnorm = gsl_blas_dnrm2 (state->p); /* should be 1 */ state->fp0 = -state->g0norm; /* Prepare the wrapper */ prepare_wrapper (&state->wrap, fdf, state->x0, *f, state->g0, state->p, state->x_alpha, state->g_alpha); /* Prepare 1d minimisation parameters */ state->rho = 0.01; state->sigma = tol; state->tau1 = 9; state->tau2 = 0.05; state->tau3 = 0.5; state->order = 3; /* use cubic interpolation where possible */ return GSL_SUCCESS; } static void vector_bfgs2_free (void *vstate) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; gsl_vector_free (state->x_alpha); gsl_vector_free (state->g_alpha); gsl_vector_free (state->dg0); gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); } static int vector_bfgs2_restart (void *vstate) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; state->iter = 0; return GSL_SUCCESS; } static int vector_bfgs2_iterate (void *vstate, gsl_multimin_function_fdf * fdf, gsl_vector * x, double *f, gsl_vector * gradient, gsl_vector * dx) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; double alpha = 0.0, alpha1; gsl_vector *x0 = state->x0; gsl_vector *g0 = state->g0; gsl_vector *p = state->p; double g0norm = state->g0norm; double pnorm = state->pnorm; double delta_f = state->delta_f; double pg, dir; int status; double f0 = *f; if (pnorm == 0.0 || g0norm == 0.0 || state->fp0 == 0) { gsl_vector_set_zero (dx); return GSL_ENOPROG; } if (delta_f < 0) { double del = GSL_MAX_DBL (-delta_f, 10 * GSL_DBL_EPSILON * fabs(f0)); alpha1 = GSL_MIN_DBL (1.0, 2.0 * del / (-state->fp0)); } else { alpha1 = fabs(state->step); } /* line minimisation, with cubic interpolation (order = 3) */ status = minimize (&state->wrap.fdf_linear, state->rho, state->sigma, state->tau1, state->tau2, state->tau3, state->order, alpha1, &alpha); if (status != GSL_SUCCESS) { return status; } update_position (&(state->wrap), alpha, x, f, gradient); state->delta_f = *f - f0; /* Choose a new direction for the next step */ { /* This is the BFGS update: */ /* p' = g1 - A dx - B dg */ /* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */ /* B = dx.g/dx.dg */ gsl_vector *dx0 = state->dx0; gsl_vector *dg0 = state->dg0; double dxg, dgg, dxdg, dgnorm, A, B; /* dx0 = x - x0 */ gsl_vector_memcpy (dx0, x); gsl_blas_daxpy (-1.0, x0, dx0); gsl_vector_memcpy (dx, dx0); /* keep a copy */ /* dg0 = g - g0 */ gsl_vector_memcpy (dg0, gradient); gsl_blas_daxpy (-1.0, g0, dg0); gsl_blas_ddot (dx0, gradient, &dxg); gsl_blas_ddot (dg0, gradient, &dgg); gsl_blas_ddot (dx0, dg0, &dxdg); dgnorm = gsl_blas_dnrm2 (dg0); if (dxdg != 0) { B = dxg / dxdg; A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg; } else { B = 0; A = 0; } gsl_vector_memcpy (p, gradient); gsl_blas_daxpy (-A, dx0, p); gsl_blas_daxpy (-B, dg0, p); } gsl_vector_memcpy (g0, gradient); gsl_vector_memcpy (x0, x); state->g0norm = gsl_blas_dnrm2 (g0); state->pnorm = gsl_blas_dnrm2 (p); /* update direction and fp0 */ gsl_blas_ddot (p, gradient, &pg); dir = (pg >= 0.0) ? -1.0 : +1.0; gsl_blas_dscal (dir / state->pnorm, p); state->pnorm = gsl_blas_dnrm2 (p); gsl_blas_ddot (p, g0, &state->fp0); change_direction (&state->wrap); return GSL_SUCCESS; } static const gsl_multimin_fdfminimizer_type vector_bfgs2_type = { "vector_bfgs2", /* name */ sizeof (vector_bfgs2_state_t), &vector_bfgs2_alloc, &vector_bfgs2_set, &vector_bfgs2_iterate, &vector_bfgs2_restart, &vector_bfgs2_free }; const gsl_multimin_fdfminimizer_type * gsl_multimin_fdfminimizer_vector_bfgs2 = &vector_bfgs2_type;