/* multimin/vector_bfgs.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* vector_bfgs.c -- Limited memory Broyden-Fletcher-Goldfarb-Shanno method */ /* Modified by Brian Gough to use single iteration structure */ #include #include #include #include "directional_minimize.c" typedef struct { int iter; double step; double max_step; double tol; gsl_vector *x1; gsl_vector *dx1; gsl_vector *x2; double g0norm; double pnorm; gsl_vector *p; gsl_vector *x0; gsl_vector *g0; gsl_vector *dx0; gsl_vector *dg0; } vector_bfgs_state_t; static int vector_bfgs_alloc (void *vstate, size_t n) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; state->x1 = gsl_vector_calloc (n); if (state->x1 == 0) { GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM); } state->dx1 = gsl_vector_calloc (n); if (state->dx1 == 0) { gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for dx1", GSL_ENOMEM); } state->x2 = gsl_vector_calloc (n); if (state->x2 == 0) { gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for x2", GSL_ENOMEM); } state->p = gsl_vector_calloc (n); if (state->p == 0) { gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM); } state->x0 = gsl_vector_calloc (n); if (state->x0 == 0) { gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->g0 = gsl_vector_calloc (n); if (state->g0 == 0) { gsl_vector_free (state->x0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->dx0 = gsl_vector_calloc (n); if (state->dx0 == 0) { gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->dg0 = gsl_vector_calloc (n); if (state->dg0 == 0) { gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } return GSL_SUCCESS; } static int vector_bfgs_set (void *vstate, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double *f, gsl_vector * gradient, double step_size, double tol) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; state->iter = 0; state->step = step_size; state->max_step = step_size; state->tol = tol; GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient); /* Use the gradient as the initial direction */ gsl_vector_memcpy (state->x0, x); gsl_vector_memcpy (state->p, gradient); gsl_vector_memcpy (state->g0, gradient); { double gnorm = gsl_blas_dnrm2 (gradient); state->pnorm = gnorm; state->g0norm = gnorm; } return GSL_SUCCESS; } static void vector_bfgs_free (void *vstate) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; gsl_vector_free (state->dg0); gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); } static int vector_bfgs_restart (void *vstate) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; state->iter = 0; return GSL_SUCCESS; } static int vector_bfgs_iterate (void *vstate, gsl_multimin_function_fdf * fdf, gsl_vector * x, double *f, gsl_vector * gradient, gsl_vector * dx) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; gsl_vector *x1 = state->x1; gsl_vector *dx1 = state->dx1; gsl_vector *x2 = state->x2; gsl_vector *p = state->p; gsl_vector *g0 = state->g0; gsl_vector *x0 = state->x0; double pnorm = state->pnorm; double g0norm = state->g0norm; double fa = *f, fb, fc; double dir; double stepa = 0.0, stepb, stepc = state->step, tol = state->tol; double g1norm; double pg; if (pnorm == 0.0 || g0norm == 0.0) { gsl_vector_set_zero (dx); return GSL_ENOPROG; } /* Determine which direction is downhill, +p or -p */ gsl_blas_ddot (p, gradient, &pg); dir = (pg >= 0.0) ? +1.0 : -1.0; /* Compute new trial point at x_c= x - step * p, where p is the current direction */ take_step (x, p, stepc, dir / pnorm, x1, dx); /* Evaluate function and gradient at new point xc */ fc = GSL_MULTIMIN_FN_EVAL_F (fdf, x1); if (fc < fa) { /* Success, reduced the function value */ state->step = stepc * 2.0; *f = fc; gsl_vector_memcpy (x, x1); GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient); return GSL_SUCCESS; } #ifdef DEBUG printf ("got stepc = %g fc = %g\n", stepc, fc); #endif /* Do a line minimisation in the region (xa,fa) (xc,fc) to find an intermediate (xb,fb) satisifying fa > fb < fc. Choose an initial xb based on parabolic interpolation */ intermediate_point (fdf, x, p, dir / pnorm, pg, stepa, stepc, fa, fc, x1, dx1, gradient, &stepb, &fb); if (stepb == 0.0) { return GSL_ENOPROG; } minimize (fdf, x, p, dir / pnorm, stepa, stepb, stepc, fa, fb, fc, tol, x1, dx1, x2, dx, gradient, &(state->step), f, &g1norm); gsl_vector_memcpy (x, x2); /* Choose a new direction for the next step */ state->iter = (state->iter + 1) % x->size; if (state->iter == 0) { gsl_vector_memcpy (p, gradient); state->pnorm = g1norm; } else { /* This is the BFGS update: */ /* p' = g1 - A dx - B dg */ /* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */ /* B = dx.g/dx.dg */ gsl_vector *dx0 = state->dx0; gsl_vector *dg0 = state->dg0; double dxg, dgg, dxdg, dgnorm, A, B; /* dx0 = x - x0 */ gsl_vector_memcpy (dx0, x); gsl_blas_daxpy (-1.0, x0, dx0); /* dg0 = g - g0 */ gsl_vector_memcpy (dg0, gradient); gsl_blas_daxpy (-1.0, g0, dg0); gsl_blas_ddot (dx0, gradient, &dxg); gsl_blas_ddot (dg0, gradient, &dgg); gsl_blas_ddot (dx0, dg0, &dxdg); dgnorm = gsl_blas_dnrm2 (dg0); if (dxdg != 0) { B = dxg / dxdg; A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg; } else { B = 0; A = 0; } gsl_vector_memcpy (p, gradient); gsl_blas_daxpy (-A, dx0, p); gsl_blas_daxpy (-B, dg0, p); state->pnorm = gsl_blas_dnrm2 (p); } gsl_vector_memcpy (g0, gradient); gsl_vector_memcpy (x0, x); state->g0norm = gsl_blas_dnrm2 (g0); #ifdef DEBUG printf ("updated directions\n"); printf ("p: "); gsl_vector_fprintf (stdout, p, "%g"); printf ("g: "); gsl_vector_fprintf (stdout, gradient, "%g"); #endif return GSL_SUCCESS; } static const gsl_multimin_fdfminimizer_type vector_bfgs_type = { "vector_bfgs", /* name */ sizeof (vector_bfgs_state_t), &vector_bfgs_alloc, &vector_bfgs_set, &vector_bfgs_iterate, &vector_bfgs_restart, &vector_bfgs_free }; const gsl_multimin_fdfminimizer_type * gsl_multimin_fdfminimizer_vector_bfgs = &vector_bfgs_type;