/* multifit_nlinear/common.c * * Copyright (C) 2014, 2015, 2016 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static double scaled_enorm (const gsl_vector * d, const gsl_vector * f); static void scaled_addition (const double alpha, const gsl_vector * x, const double beta, const gsl_vector * y, gsl_vector * z); static double quadratic_preduction(const gsl_vector *f, const gsl_matrix * J, const gsl_vector * dx, gsl_vector * work); /* compute || diag(d) f || */ static double scaled_enorm (const gsl_vector * d, const gsl_vector * f) { double e2 = 0; size_t i, n = f->size; for (i = 0; i < n; i++) { double fi = gsl_vector_get (f, i); double di = gsl_vector_get (d, i); double u = di * fi; e2 += u * u; } return sqrt (e2); } /* compute z = alpha*x + beta*y */ static void scaled_addition (const double alpha, const gsl_vector * x, const double beta, const gsl_vector * y, gsl_vector * z) { const size_t N = z->size; size_t i; for (i = 0; i < N; i++) { double xi = gsl_vector_get (x, i); double yi = gsl_vector_get (y, i); gsl_vector_set (z, i, alpha * xi + beta * yi); } } /* quadratic_preduction() Calculate predicted reduction based on standard quadratic model: m_k(dx) = Phi(x_k) + dx' g + 1/2 dx' B_k dx predicted_reduction = m_k(0) - m_k(dx) = -2 g^T dx / ||f||^2 - ( ||J*dx|| / ||f|| )^2 = -2 fhat . beta - ||beta||^2 where: beta = J*dx / ||f|| Inputs: f - f(x), size n J - Jacobian J(x), n-by-p dx - proposed step, size p work - workspace, size n Return: predicted reduction */ static double quadratic_preduction(const gsl_vector * f, const gsl_matrix * J, const gsl_vector * dx, gsl_vector * work) { const size_t n = f->size; const double normf = gsl_blas_dnrm2(f); double pred_reduction; double norm_beta; /* ||J*dx|| / ||f|| */ size_t i; /* compute beta = J*dx / ||f|| */ gsl_blas_dgemv(CblasNoTrans, 1.0 / normf, J, dx, 0.0, work); norm_beta = gsl_blas_dnrm2(work); /* initialize to ( ||J*dx|| / ||f|| )^2 */ pred_reduction = -norm_beta * norm_beta; /* subtract 2*fhat.beta */ for (i = 0; i < n; ++i) { double fi = gsl_vector_get(f, i); double betai = gsl_vector_get(work, i); pred_reduction -= 2.0 * (fi / normf) * betai; } return pred_reduction; }