#include #include #include #include /* set up parameters for this simulated annealing run */ /* how many points do we try before stepping */ #define N_TRIES 200 /* how many iterations for each T? */ #define ITERS_FIXED_T 1000 /* max step size in random walk */ #define STEP_SIZE 1.0 /* Boltzmann constant */ #define K 1.0 /* initial temperature */ #define T_INITIAL 0.008 /* damping factor for temperature */ #define MU_T 1.003 #define T_MIN 2.0e-6 gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE, K, T_INITIAL, MU_T, T_MIN}; /* now some functions to test in one dimension */ double E1(void *xp) { double x = * ((double *) xp); return exp(-pow((x-1.0),2.0))*sin(8*x); } double M1(void *xp, void *yp) { double x = *((double *) xp); double y = *((double *) yp); return fabs(x - y); } void S1(const gsl_rng * r, void *xp, double step_size) { double old_x = *((double *) xp); double new_x; double u = gsl_rng_uniform(r); new_x = u * 2 * step_size - step_size + old_x; memcpy(xp, &new_x, sizeof(new_x)); } void P1(void *xp) { printf ("%12g", *((double *) xp)); } int main(void) { const gsl_rng_type * T; gsl_rng * r; double x_initial = 15.5; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc(T); gsl_siman_solve(r, &x_initial, E1, S1, M1, P1, NULL, NULL, NULL, sizeof(double), params); gsl_rng_free (r); return 0; }