/* This function computes the solution to the least squares system phi = [ A x = b , lambda D x = 0 ]^2 where A is an M by N matrix, D is an N by N diagonal matrix, lambda is a scalar parameter and b is a vector of length M. The function requires the factorization of A into A = Q R P^T, where Q is an orthogonal matrix, R is an upper triangular matrix with diagonal elements of non-increasing magnitude and P is a permuation matrix. The system above is then equivalent to [ R z = Q^T b, P^T (lambda D) P z = 0 ] where x = P z. If this system does not have full rank then a least squares solution is obtained. On output the function also provides an upper triangular matrix S such that P^T (A^T A + lambda^2 D^T D) P = S^T S Parameters, r: On input, contains the full upper triangle of R. The diagonal elements are modified but restored on output. The full upper triangle of R is not modified. p: the encoded form of the permutation matrix P. column j of P is column p[j] of the identity matrix. lambda, diag: contains the scalar lambda and the diagonal elements of the matrix D qtb: contains the product Q^T b S: on output contains the matrix S, n-by-n x: on output contains the least squares solution of the system work: is a workspace of length N */ static int qrsolv (gsl_matrix * r, const gsl_permutation * p, const double lambda, const gsl_vector * diag, const gsl_vector * qtb, gsl_matrix * S, gsl_vector * x, gsl_vector * work) { size_t n = r->size2; size_t i, j, k, nsing; /* Copy r and qtb to preserve input and initialise s. In particular, save the diagonal elements of r in x */ for (j = 0; j < n; j++) { double rjj = gsl_matrix_get (r, j, j); double qtbj = gsl_vector_get (qtb, j); for (i = j + 1; i < n; i++) { double rji = gsl_matrix_get (r, j, i); gsl_matrix_set (S, i, j, rji); } gsl_vector_set (x, j, rjj); gsl_vector_set (work, j, qtbj); } /* Eliminate the diagonal matrix d using a Givens rotation */ for (j = 0; j < n; j++) { double qtbpj; size_t pj = gsl_permutation_get (p, j); double diagpj = lambda * gsl_vector_get (diag, pj); if (diagpj == 0) { continue; } gsl_matrix_set (S, j, j, diagpj); for (k = j + 1; k < n; k++) { gsl_matrix_set (S, k, k, 0.0); } /* The transformations to eliminate the row of d modify only a single element of qtb beyond the first n, which is initially zero */ qtbpj = 0; for (k = j; k < n; k++) { /* Determine a Givens rotation which eliminates the appropriate element in the current row of d */ double sine, cosine; double wk = gsl_vector_get (work, k); double rkk = gsl_matrix_get (r, k, k); double skk = gsl_matrix_get (S, k, k); if (skk == 0) { continue; } if (fabs (rkk) < fabs (skk)) { double cotangent = rkk / skk; sine = 0.5 / sqrt (0.25 + 0.25 * cotangent * cotangent); cosine = sine * cotangent; } else { double tangent = skk / rkk; cosine = 0.5 / sqrt (0.25 + 0.25 * tangent * tangent); sine = cosine * tangent; } /* Compute the modified diagonal element of r and the modified element of [qtb,0] */ { double new_rkk = cosine * rkk + sine * skk; double new_wk = cosine * wk + sine * qtbpj; qtbpj = -sine * wk + cosine * qtbpj; gsl_matrix_set(r, k, k, new_rkk); gsl_matrix_set(S, k, k, new_rkk); gsl_vector_set(work, k, new_wk); } /* Accumulate the transformation in the row of s */ for (i = k + 1; i < n; i++) { double sik = gsl_matrix_get (S, i, k); double sii = gsl_matrix_get (S, i, i); double new_sik = cosine * sik + sine * sii; double new_sii = -sine * sik + cosine * sii; gsl_matrix_set(S, i, k, new_sik); gsl_matrix_set(S, i, i, new_sii); } } /* Store the corresponding diagonal element of s and restore the corresponding diagonal element of r */ { double xj = gsl_vector_get(x, j); gsl_matrix_set (r, j, j, xj); } } /* Solve the triangular system for z. If the system is singular then obtain a least squares solution */ nsing = n; for (j = 0; j < n; j++) { double sjj = gsl_matrix_get (S, j, j); if (sjj == 0) { nsing = j; break; } } for (j = nsing; j < n; j++) { gsl_vector_set (work, j, 0.0); } for (k = 0; k < nsing; k++) { double sum = 0; j = (nsing - 1) - k; for (i = j + 1; i < nsing; i++) { sum += gsl_matrix_get(S, i, j) * gsl_vector_get(work, i); } { double wj = gsl_vector_get (work, j); double sjj = gsl_matrix_get (S, j, j); gsl_vector_set (work, j, (wj - sum) / sjj); } } /* Permute the components of z back to the components of x */ for (j = 0; j < n; j++) { size_t pj = gsl_permutation_get (p, j); double wj = gsl_vector_get (work, j); gsl_vector_set (x, pj, wj); } return GSL_SUCCESS; }