/* randist/dirichlet.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 2002 Gavin E. Crooks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The Dirichlet probability distribution of order K-1 is p(\theta_1,...,\theta_K) d\theta_1 ... d\theta_K = (1/Z) \prod_i=1,K \theta_i^{alpha_i - 1} \delta(1 -\sum_i=1,K \theta_i) The normalization factor Z can be expressed in terms of gamma functions: Z = {\prod_i=1,K \Gamma(\alpha_i)} / {\Gamma( \sum_i=1,K \alpha_i)} The K constants, \alpha_1,...,\alpha_K, must be positive. The K parameters, \theta_1,...,\theta_K are nonnegative and sum to 1. The random variates are generated by sampling K values from gamma distributions with parameters a=\alpha_i, b=1, and renormalizing. See A.M. Law, W.D. Kelton, Simulation Modeling and Analysis (1991). Gavin E. Crooks (2002) */ static void ran_dirichlet_small (const gsl_rng * r, const size_t K, const double alpha[], double theta[]); void gsl_ran_dirichlet (const gsl_rng * r, const size_t K, const double alpha[], double theta[]) { size_t i; double norm = 0.0; for (i = 0; i < K; i++) { theta[i] = gsl_ran_gamma (r, alpha[i], 1.0); } for (i = 0; i < K; i++) { norm += theta[i]; } if (norm < GSL_SQRT_DBL_MIN) /* Handle underflow */ { ran_dirichlet_small (r, K, alpha, theta); return; } for (i = 0; i < K; i++) { theta[i] /= norm; } } /* When the values of alpha[] are small, scale the variates to avoid underflow so that the result is not 0/0. Note that the Dirichlet distribution is defined by a ratio of gamma functions so we can take out an arbitrary factor to keep the values in the range of double precision. */ static void ran_dirichlet_small (const gsl_rng * r, const size_t K, const double alpha[], double theta[]) { size_t i; double norm = 0.0, umax = 0; for (i = 0; i < K; i++) { double u = log(gsl_rng_uniform_pos (r)) / alpha[i]; theta[i] = u; if (u > umax || i == 0) { umax = u; } } for (i = 0; i < K; i++) { theta[i] = exp(theta[i] - umax); } for (i = 0; i < K; i++) { theta[i] = theta[i] * gsl_ran_gamma (r, alpha[i] + 1.0, 1.0); } for (i = 0; i < K; i++) { norm += theta[i]; } for (i = 0; i < K; i++) { theta[i] /= norm; } } double gsl_ran_dirichlet_pdf (const size_t K, const double alpha[], const double theta[]) { return exp (gsl_ran_dirichlet_lnpdf (K, alpha, theta)); } double gsl_ran_dirichlet_lnpdf (const size_t K, const double alpha[], const double theta[]) { /*We calculate the log of the pdf to minimize the possibility of overflow */ size_t i; double log_p = 0.0; double sum_alpha = 0.0; for (i = 0; i < K; i++) { log_p += (alpha[i] - 1.0) * log (theta[i]); } for (i = 0; i < K; i++) { sum_alpha += alpha[i]; } log_p += gsl_sf_lngamma (sum_alpha); for (i = 0; i < K; i++) { log_p -= gsl_sf_lngamma (alpha[i]); } return log_p; }