/* linalg/exponential.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Calculate the matrix exponential, following * Moler + Van Loan, SIAM Rev. 20, 801 (1978). */ #include #include #include #include #include #include #include "gsl_linalg.h" /* store one of the suggested choices for the * Taylor series / square method from Moler + VanLoan */ struct moler_vanloan_optimal_suggestion { int k; int j; }; typedef struct moler_vanloan_optimal_suggestion mvl_suggestion_t; /* table from Moler and Van Loan * mvl_tab[gsl_mode_t][matrix_norm_group] */ static mvl_suggestion_t mvl_tab[3][6] = { /* double precision */ { { 5, 1 }, { 5, 4 }, { 7, 5 }, { 9, 7 }, { 10, 10 }, { 8, 14 } }, /* single precision */ { { 2, 1 }, { 4, 0 }, { 7, 1 }, { 6, 5 }, { 5, 9 }, { 7, 11 } }, /* approx precision */ { { 1, 0 }, { 3, 0 }, { 5, 1 }, { 4, 5 }, { 4, 8 }, { 2, 11 } } }; inline static double sup_norm(const gsl_matrix * A) { double min, max; gsl_matrix_minmax(A, &min, &max); return GSL_MAX_DBL(fabs(min), fabs(max)); } static mvl_suggestion_t obtain_suggestion(const gsl_matrix * A, gsl_mode_t mode) { const unsigned int mode_prec = GSL_MODE_PREC(mode); const double norm_A = sup_norm(A); if(norm_A < 0.01) return mvl_tab[mode_prec][0]; else if(norm_A < 0.1) return mvl_tab[mode_prec][1]; else if(norm_A < 1.0) return mvl_tab[mode_prec][2]; else if(norm_A < 10.0) return mvl_tab[mode_prec][3]; else if(norm_A < 100.0) return mvl_tab[mode_prec][4]; else if(norm_A < 1000.0) return mvl_tab[mode_prec][5]; else { /* outside the table we simply increase the number * of squarings, bringing the reduced matrix into * the range of the table; this is obviously suboptimal, * but that is the price paid for not having those extra * table entries */ const double extra = log(1.01*norm_A/1000.0) / M_LN2; const int extra_i = (unsigned int) ceil(extra); mvl_suggestion_t s = mvl_tab[mode][5]; s.j += extra_i; return s; } } /* use series representation to calculate matrix exponential; * this is used for small matrices; we use the sup_norm * to measure the size of the terms in the expansion */ static void matrix_exp_series( const gsl_matrix * B, gsl_matrix * eB, int number_of_terms ) { int count; gsl_matrix * temp = gsl_matrix_calloc(B->size1, B->size2); /* init the Horner polynomial evaluation, * eB = 1 + B/number_of_terms; we use * eB to collect the partial results */ gsl_matrix_memcpy(eB, B); gsl_matrix_scale(eB, 1.0/number_of_terms); gsl_matrix_add_diagonal(eB, 1.0); for(count = number_of_terms-1; count >= 1; --count) { /* mult_temp = 1 + B eB / count */ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, B, eB, 0.0, temp); gsl_matrix_scale(temp, 1.0/count); gsl_matrix_add_diagonal(temp, 1.0); /* transfer partial result out of temp */ gsl_matrix_memcpy(eB, temp); } /* now eB holds the full result; we're done */ gsl_matrix_free(temp); } int gsl_linalg_exponential_ss( const gsl_matrix * A, gsl_matrix * eA, gsl_mode_t mode ) { if(A->size1 != A->size2) { GSL_ERROR("cannot exponentiate a non-square matrix", GSL_ENOTSQR); } else if(A->size1 != eA->size1 || A->size2 != eA->size2) { GSL_ERROR("exponential of matrix must have same dimension as matrix", GSL_EBADLEN); } else { int i; const mvl_suggestion_t sugg = obtain_suggestion(A, mode); const double divisor = exp(M_LN2 * sugg.j); gsl_matrix * reduced_A = gsl_matrix_alloc(A->size1, A->size2); /* decrease A by the calculated divisor */ gsl_matrix_memcpy(reduced_A, A); gsl_matrix_scale(reduced_A, 1.0/divisor); /* calculate exp of reduced matrix; store in eA as temp */ matrix_exp_series(reduced_A, eA, sugg.k); /* square repeatedly; use reduced_A for scratch */ for(i = 0; i < sugg.j; ++i) { gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, eA, eA, 0.0, reduced_A); gsl_matrix_memcpy(eA, reduced_A); } gsl_matrix_free(reduced_A); return GSL_SUCCESS; } }