/* eigen/qrstep.c * * Copyright (C) 2007, 2010 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* remove off-diagonal elements which are neglegible compared with the neighboring diagonal elements */ static void chop_small_elements (const size_t N, const double d[], double sd[]) { double d_i = d[0]; size_t i; for (i = 0; i < N - 1; i++) { double sd_i = sd[i]; double d_ip1 = d[i + 1]; if (fabs (sd_i) < GSL_DBL_EPSILON * (fabs (d_i) + fabs (d_ip1))) { sd[i] = 0.0; } d_i = d_ip1; } } /* Generate a Givens rotation (cos,sin) which takes v=(x,y) to (|v|,0) From Golub and Van Loan, "Matrix Computations", Section 5.1.8 */ inline static void create_givens (const double a, const double b, double *c, double *s) { if (b == 0) { *c = 1; *s = 0; } else if (fabs (b) > fabs (a)) { double t = -a / b; double s1 = 1.0 / sqrt (1 + t * t); *s = s1; *c = s1 * t; } else { double t = -b / a; double c1 = 1.0 / sqrt (1 + t * t); *c = c1; *s = c1 * t; } } inline static double trailing_eigenvalue (const size_t n, const double d[], const double sd[]) { double ta = d[n - 2]; double tb = d[n - 1]; double tab = sd[n - 2]; double dt = (ta - tb) / 2.0; double mu; if (dt > 0) { mu = tb - tab * (tab / (dt + hypot (dt, tab))); } else if (dt == 0) { mu = tb - fabs(tab); } else { mu = tb + tab * (tab / ((-dt) + hypot (dt, tab))); } return mu; } static void qrstep (const size_t n, double d[], double sd[], double gc[], double gs[]) { double x, z; double ak, bk, zk, ap, bp, aq, bq; size_t k; double mu = trailing_eigenvalue (n, d, sd); /* If mu is large relative to d_0 and sd_0 then the Givens rotation will have no effect, leading to an infinite loop. We set mu to zero in this case, which at least diagonalises the submatrix [d_0, sd_0 ; sd_0, d_0] and allows further progress. */ if (GSL_DBL_EPSILON * fabs(mu) > (fabs(d[0]) + fabs(sd[0]))) { mu = 0; } x = d[0] - mu; z = sd[0]; ak = 0; bk = 0; zk = 0; ap = d[0]; bp = sd[0]; aq = d[1]; if (n == 2) { double c, s; create_givens (x, z, &c, &s); if (gc != NULL) gc[0] = c; if (gs != NULL) gs[0] = s; { double ap1 = c * (c * ap - s * bp) + s * (s * aq - c * bp); double bp1 = c * (s * ap + c * bp) - s * (s * bp + c * aq); double aq1 = s * (s * ap + c * bp) + c * (s * bp + c * aq); ak = ap1; bk = bp1; ap = aq1; } d[0] = ak; sd[0] = bk; d[1] = ap; return; } bq = sd[1]; for (k = 0; k < n - 1; k++) { double c, s; create_givens (x, z, &c, &s); /* store Givens rotation */ if (gc != NULL) gc[k] = c; if (gs != NULL) gs[k] = s; /* compute G' T G */ { double bk1 = c * bk - s * zk; double ap1 = c * (c * ap - s * bp) + s * (s * aq - c * bp); double bp1 = c * (s * ap + c * bp) - s * (s * bp + c * aq); double zp1 = -s * bq; double aq1 = s * (s * ap + c * bp) + c * (s * bp + c * aq); double bq1 = c * bq; ak = ap1; bk = bp1; zk = zp1; ap = aq1; bp = bq1; if (k < n - 2) aq = d[k + 2]; if (k < n - 3) bq = sd[k + 2]; d[k] = ak; if (k > 0) sd[k - 1] = bk1; if (k < n - 2) sd[k + 1] = bp; x = bk; z = zk; } } /* k = n - 1 */ d[k] = ap; sd[k - 1] = bk; }