/* spcompress.c * * Copyright (C) 2012-2014, 2016 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* gsl_spmatrix_ccs() Create a sparse matrix in compressed column format Inputs: T - sparse matrix in triplet format Return: pointer to new matrix (should be freed when finished with it) */ gsl_spmatrix * gsl_spmatrix_ccs(const gsl_spmatrix *T) { if (!GSL_SPMATRIX_ISTRIPLET(T)) { GSL_ERROR_NULL("matrix must be in triplet format", GSL_EINVAL); } else { const size_t *Tj; /* column indices of triplet matrix */ size_t *Cp; /* column pointers of compressed column matrix */ size_t *w; /* copy of column pointers */ gsl_spmatrix *m; size_t n; m = gsl_spmatrix_alloc_nzmax(T->size1, T->size2, T->nz, GSL_SPMATRIX_CCS); if (!m) return NULL; Tj = T->p; Cp = m->p; /* initialize column pointers to 0 */ for (n = 0; n < m->size2 + 1; ++n) Cp[n] = 0; /* * compute the number of elements in each column: * Cp[j] = # non-zero elements in column j */ for (n = 0; n < T->nz; ++n) Cp[Tj[n]]++; /* compute column pointers: p[j] = p[j-1] + nnz[j-1] */ gsl_spmatrix_cumsum(m->size2, Cp); /* make a copy of the column pointers */ w = m->work_sze; for (n = 0; n < m->size2; ++n) w[n] = Cp[n]; /* transfer data from triplet format to CCS */ for (n = 0; n < T->nz; ++n) { size_t k = w[Tj[n]]++; m->i[k] = T->i[n]; m->data[k] = T->data[n]; } m->nz = T->nz; return m; } } gsl_spmatrix * gsl_spmatrix_compcol(const gsl_spmatrix *T) { return gsl_spmatrix_ccs(T); } /* gsl_spmatrix_crs() Create a sparse matrix in compressed row format Inputs: T - sparse matrix in triplet format Return: pointer to new matrix (should be freed when finished with it) */ gsl_spmatrix * gsl_spmatrix_crs(const gsl_spmatrix *T) { if (!GSL_SPMATRIX_ISTRIPLET(T)) { GSL_ERROR_NULL("matrix must be in triplet format", GSL_EINVAL); } else { const size_t *Ti; /* row indices of triplet matrix */ size_t *Cp; /* row pointers of compressed row matrix */ size_t *w; /* copy of column pointers */ gsl_spmatrix *m; size_t n; m = gsl_spmatrix_alloc_nzmax(T->size1, T->size2, T->nz, GSL_SPMATRIX_CRS); if (!m) return NULL; Ti = T->i; Cp = m->p; /* initialize row pointers to 0 */ for (n = 0; n < m->size1 + 1; ++n) Cp[n] = 0; /* * compute the number of elements in each row: * Cp[i] = # non-zero elements in row i */ for (n = 0; n < T->nz; ++n) Cp[Ti[n]]++; /* compute row pointers: p[i] = p[i-1] + nnz[i-1] */ gsl_spmatrix_cumsum(m->size1, Cp); /* make a copy of the row pointers */ w = m->work_sze; for (n = 0; n < m->size1; ++n) w[n] = Cp[n]; /* transfer data from triplet format to CRS */ for (n = 0; n < T->nz; ++n) { size_t k = w[Ti[n]]++; m->i[k] = T->p[n]; m->data[k] = T->data[n]; } m->nz = T->nz; return m; } } /* gsl_spmatrix_cumsum() Compute the cumulative sum: p[j] = Sum_{k=0...j-1} c[k] 0 <= j < n + 1 Alternatively, p[0] = 0 p[j] = p[j - 1] + c[j - 1] Inputs: n - length of input array c - (input/output) array of size n + 1 on input, contains the n values c[k] on output, contains the n + 1 values p[j] Return: success or error */ void gsl_spmatrix_cumsum(const size_t n, size_t *c) { size_t sum = 0; size_t k; for (k = 0; k < n; ++k) { size_t ck = c[k]; c[k] = sum; sum += ck; } c[n] = sum; } /* gsl_spmatrix_cumsum() */