/* diff/diff.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 David Morrison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #undef GSL_DISABLE_DEPRECATED #include int gsl_diff_backward (const gsl_function * f, double x, double *result, double *abserr) { /* Construct a divided difference table with a fairly large step size to get a very rough estimate of f''. Use this to estimate the step size which will minimize the error in calculating f'. */ int i, k; double h = GSL_SQRT_DBL_EPSILON; double a[3], d[3], a2; /* Algorithm based on description on pg. 204 of Conte and de Boor (CdB) - coefficients of Newton form of polynomial of degree 2. */ for (i = 0; i < 3; i++) { a[i] = x + (i - 2.0) * h; d[i] = GSL_FN_EVAL (f, a[i]); } for (k = 1; k < 4; k++) { for (i = 0; i < 3 - k; i++) { d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]); } } /* Adapt procedure described on pg. 282 of CdB to find best value of step size. */ a2 = fabs (d[0] + d[1] + d[2]); if (a2 < 100.0 * GSL_SQRT_DBL_EPSILON) { a2 = 100.0 * GSL_SQRT_DBL_EPSILON; } h = sqrt (GSL_SQRT_DBL_EPSILON / (2.0 * a2)); if (h > 100.0 * GSL_SQRT_DBL_EPSILON) { h = 100.0 * GSL_SQRT_DBL_EPSILON; } *result = (GSL_FN_EVAL (f, x) - GSL_FN_EVAL (f, x - h)) / h; *abserr = fabs (10.0 * a2 * h); return GSL_SUCCESS; } int gsl_diff_forward (const gsl_function * f, double x, double *result, double *abserr) { /* Construct a divided difference table with a fairly large step size to get a very rough estimate of f''. Use this to estimate the step size which will minimize the error in calculating f'. */ int i, k; double h = GSL_SQRT_DBL_EPSILON; double a[3], d[3], a2; /* Algorithm based on description on pg. 204 of Conte and de Boor (CdB) - coefficients of Newton form of polynomial of degree 2. */ for (i = 0; i < 3; i++) { a[i] = x + i * h; d[i] = GSL_FN_EVAL (f, a[i]); } for (k = 1; k < 4; k++) { for (i = 0; i < 3 - k; i++) { d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]); } } /* Adapt procedure described on pg. 282 of CdB to find best value of step size. */ a2 = fabs (d[0] + d[1] + d[2]); if (a2 < 100.0 * GSL_SQRT_DBL_EPSILON) { a2 = 100.0 * GSL_SQRT_DBL_EPSILON; } h = sqrt (GSL_SQRT_DBL_EPSILON / (2.0 * a2)); if (h > 100.0 * GSL_SQRT_DBL_EPSILON) { h = 100.0 * GSL_SQRT_DBL_EPSILON; } *result = (GSL_FN_EVAL (f, x + h) - GSL_FN_EVAL (f, x)) / h; *abserr = fabs (10.0 * a2 * h); return GSL_SUCCESS; } int gsl_diff_central (const gsl_function * f, double x, double *result, double *abserr) { /* Construct a divided difference table with a fairly large step size to get a very rough estimate of f'''. Use this to estimate the step size which will minimize the error in calculating f'. */ int i, k; double h = GSL_SQRT_DBL_EPSILON; double a[4], d[4], a3; /* Algorithm based on description on pg. 204 of Conte and de Boor (CdB) - coefficients of Newton form of polynomial of degree 3. */ for (i = 0; i < 4; i++) { a[i] = x + (i - 2.0) * h; d[i] = GSL_FN_EVAL (f, a[i]); } for (k = 1; k < 5; k++) { for (i = 0; i < 4 - k; i++) { d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]); } } /* Adapt procedure described on pg. 282 of CdB to find best value of step size. */ a3 = fabs (d[0] + d[1] + d[2] + d[3]); if (a3 < 100.0 * GSL_SQRT_DBL_EPSILON) { a3 = 100.0 * GSL_SQRT_DBL_EPSILON; } h = pow (GSL_SQRT_DBL_EPSILON / (2.0 * a3), 1.0 / 3.0); if (h > 100.0 * GSL_SQRT_DBL_EPSILON) { h = 100.0 * GSL_SQRT_DBL_EPSILON; } *result = (GSL_FN_EVAL (f, x + h) - GSL_FN_EVAL (f, x - h)) / (2.0 * h); *abserr = fabs (100.0 * a3 * h * h); return GSL_SUCCESS; }