/* fft/real_radix2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_fft_real,radix2_transform) (BASE data[], const size_t stride, const size_t n) { int result ; size_t p, p_1, q; size_t i; size_t logn = 0; int status; if (n == 1) /* identity operation */ { return 0 ; } /* make sure that n is a power of 2 */ result = fft_binary_logn(n) ; if (result == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } else { logn = result ; } /* bit reverse the ordering of input data for decimation in time algorithm */ status = FUNCTION(fft_real,bitreverse_order)(data, stride, n, logn) ; /* apply fft recursion */ p = 1; q = n ; for (i = 1; i <= logn; i++) { size_t a, b; p_1 = p ; p = 2 * p ; q = q / 2 ; /* a = 0 */ for (b = 0; b < q; b++) { ATOMIC t0_real = VECTOR(data,stride,b*p) + VECTOR(data,stride,b*p + p_1) ; ATOMIC t1_real = VECTOR(data,stride,b*p) - VECTOR(data,stride,b*p + p_1) ; VECTOR(data,stride,b*p) = t0_real ; VECTOR(data,stride,b*p + p_1) = t1_real ; } /* a = 1 ... p_{i-1}/2 - 1 */ { ATOMIC w_real = 1.0; ATOMIC w_imag = 0.0; const double theta = - 2.0 * M_PI / p; const ATOMIC s = sin (theta); const ATOMIC t = sin (theta / 2.0); const ATOMIC s2 = 2.0 * t * t; for (a = 1; a < (p_1)/2; a++) { /* trignometric recurrence for w-> exp(i theta) w */ { const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real; const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } for (b = 0; b < q; b++) { ATOMIC z0_real = VECTOR(data,stride,b*p + a) ; ATOMIC z0_imag = VECTOR(data,stride,b*p + p_1 - a) ; ATOMIC z1_real = VECTOR(data,stride,b*p + p_1 + a) ; ATOMIC z1_imag = VECTOR(data,stride,b*p + p - a) ; /* t0 = z0 + w * z1 */ ATOMIC t0_real = z0_real + w_real * z1_real - w_imag * z1_imag; ATOMIC t0_imag = z0_imag + w_real * z1_imag + w_imag * z1_real; /* t1 = z0 - w * z1 */ ATOMIC t1_real = z0_real - w_real * z1_real + w_imag * z1_imag; ATOMIC t1_imag = z0_imag - w_real * z1_imag - w_imag * z1_real; VECTOR(data,stride,b*p + a) = t0_real ; VECTOR(data,stride,b*p + p - a) = t0_imag ; VECTOR(data,stride,b*p + p_1 - a) = t1_real ; VECTOR(data,stride,b*p + p_1 + a) = -t1_imag ; } } } if (p_1 > 1) { for (b = 0; b < q; b++) { /* a = p_{i-1}/2 */ VECTOR(data,stride,b*p + p - p_1/2) *= -1 ; } } } return 0; }