/* linalg/svd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007, 2010 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include "svdstep.c" /* Factorise a general M x N matrix A into, * * A = U D V^T * * where U is a column-orthogonal M x N matrix (U^T U = I), * D is a diagonal N x N matrix, * and V is an N x N orthogonal matrix (V^T V = V V^T = I) * * U is stored in the original matrix A, which has the same size * * V is stored as a separate matrix (not V^T). You must take the * transpose to form the product above. * * The diagonal matrix D is stored in the vector S, D_ii = S_i */ int gsl_linalg_SV_decomp (gsl_matrix * A, gsl_matrix * V, gsl_vector * S, gsl_vector * work) { size_t a, b, i, j, iter; const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN (M, N); if (M < N) { GSL_ERROR ("svd of MxN matrix, Msize1 != N) { GSL_ERROR ("square matrix V must match second dimension of matrix A", GSL_EBADLEN); } else if (V->size1 != V->size2) { GSL_ERROR ("matrix V must be square", GSL_ENOTSQR); } else if (S->size != N) { GSL_ERROR ("length of vector S must match second dimension of matrix A", GSL_EBADLEN); } else if (work->size != N) { GSL_ERROR ("length of workspace must match second dimension of matrix A", GSL_EBADLEN); } /* Handle the case of N = 1 (SVD of a column vector) */ if (N == 1) { gsl_vector_view column = gsl_matrix_column (A, 0); double norm = gsl_blas_dnrm2 (&column.vector); gsl_vector_set (S, 0, norm); gsl_matrix_set (V, 0, 0, 1.0); if (norm != 0.0) { gsl_blas_dscal (1.0/norm, &column.vector); } return GSL_SUCCESS; } { gsl_vector_view f = gsl_vector_subvector (work, 0, K - 1); /* bidiagonalize matrix A, unpack A into U S V */ gsl_linalg_bidiag_decomp (A, S, &f.vector); gsl_linalg_bidiag_unpack2 (A, S, &f.vector, V); /* apply reduction steps to B=(S,Sd) */ chop_small_elements (S, &f.vector); /* Progressively reduce the matrix until it is diagonal */ b = N - 1; iter = 0; while (b > 0) { double fbm1 = gsl_vector_get (&f.vector, b - 1); if (fbm1 == 0.0 || gsl_isnan (fbm1)) { b--; continue; } /* Find the largest unreduced block (a,b) starting from b and working backwards */ a = b - 1; while (a > 0) { double fam1 = gsl_vector_get (&f.vector, a - 1); if (fam1 == 0.0 || gsl_isnan (fam1)) { break; } a--; } iter++; if (iter > 100 * N) { GSL_ERROR("SVD decomposition failed to converge", GSL_EMAXITER); } { const size_t n_block = b - a + 1; gsl_vector_view S_block = gsl_vector_subvector (S, a, n_block); gsl_vector_view f_block = gsl_vector_subvector (&f.vector, a, n_block - 1); gsl_matrix_view U_block = gsl_matrix_submatrix (A, 0, a, A->size1, n_block); gsl_matrix_view V_block = gsl_matrix_submatrix (V, 0, a, V->size1, n_block); int rescale = 0; double scale = 1; double norm = 0; /* Find the maximum absolute values of the diagonal and subdiagonal */ for (i = 0; i < n_block; i++) { double s_i = gsl_vector_get (&S_block.vector, i); double a = fabs(s_i); if (a > norm) norm = a; } for (i = 0; i < n_block - 1; i++) { double f_i = gsl_vector_get (&f_block.vector, i); double a = fabs(f_i); if (a > norm) norm = a; } /* Temporarily scale the submatrix if necessary */ if (norm > GSL_SQRT_DBL_MAX) { scale = (norm / GSL_SQRT_DBL_MAX); rescale = 1; } else if (norm < GSL_SQRT_DBL_MIN && norm > 0) { scale = (norm / GSL_SQRT_DBL_MIN); rescale = 1; } if (rescale) { gsl_blas_dscal(1.0 / scale, &S_block.vector); gsl_blas_dscal(1.0 / scale, &f_block.vector); } /* Perform the implicit QR step */ qrstep (&S_block.vector, &f_block.vector, &U_block.matrix, &V_block.matrix); /* remove any small off-diagonal elements */ chop_small_elements (&S_block.vector, &f_block.vector); /* Undo the scaling if needed */ if (rescale) { gsl_blas_dscal(scale, &S_block.vector); gsl_blas_dscal(scale, &f_block.vector); } } } } /* Make singular values positive by reflections if necessary */ for (j = 0; j < K; j++) { double Sj = gsl_vector_get (S, j); if (Sj < 0.0) { for (i = 0; i < N; i++) { double Vij = gsl_matrix_get (V, i, j); gsl_matrix_set (V, i, j, -Vij); } gsl_vector_set (S, j, -Sj); } } /* Sort singular values into decreasing order */ for (i = 0; i < K; i++) { double S_max = gsl_vector_get (S, i); size_t i_max = i; for (j = i + 1; j < K; j++) { double Sj = gsl_vector_get (S, j); if (Sj > S_max) { S_max = Sj; i_max = j; } } if (i_max != i) { /* swap eigenvalues */ gsl_vector_swap_elements (S, i, i_max); /* swap eigenvectors */ gsl_matrix_swap_columns (A, i, i_max); gsl_matrix_swap_columns (V, i, i_max); } } return GSL_SUCCESS; } /* Modified algorithm which is better for M>>N */ int gsl_linalg_SV_decomp_mod (gsl_matrix * A, gsl_matrix * X, gsl_matrix * V, gsl_vector * S, gsl_vector * work) { size_t i, j; const size_t M = A->size1; const size_t N = A->size2; if (M < N) { GSL_ERROR ("svd of MxN matrix, Msize1 != N) { GSL_ERROR ("square matrix V must match second dimension of matrix A", GSL_EBADLEN); } else if (V->size1 != V->size2) { GSL_ERROR ("matrix V must be square", GSL_ENOTSQR); } else if (X->size1 != N) { GSL_ERROR ("square matrix X must match second dimension of matrix A", GSL_EBADLEN); } else if (X->size1 != X->size2) { GSL_ERROR ("matrix X must be square", GSL_ENOTSQR); } else if (S->size != N) { GSL_ERROR ("length of vector S must match second dimension of matrix A", GSL_EBADLEN); } else if (work->size != N) { GSL_ERROR ("length of workspace must match second dimension of matrix A", GSL_EBADLEN); } if (N == 1) { gsl_vector_view column = gsl_matrix_column (A, 0); double norm = gsl_blas_dnrm2 (&column.vector); gsl_vector_set (S, 0, norm); gsl_matrix_set (V, 0, 0, 1.0); if (norm != 0.0) { gsl_blas_dscal (1.0/norm, &column.vector); } return GSL_SUCCESS; } /* Convert A into an upper triangular matrix R */ for (i = 0; i < N; i++) { gsl_vector_view c = gsl_matrix_column (A, i); gsl_vector_view v = gsl_vector_subvector (&c.vector, i, M - i); double tau_i = gsl_linalg_householder_transform (&v.vector); /* Apply the transformation to the remaining columns */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1)); gsl_linalg_householder_hm (tau_i, &v.vector, &m.matrix); } gsl_vector_set (S, i, tau_i); } /* Copy the upper triangular part of A into X */ for (i = 0; i < N; i++) { for (j = 0; j < i; j++) { gsl_matrix_set (X, i, j, 0.0); } { double Aii = gsl_matrix_get (A, i, i); gsl_matrix_set (X, i, i, Aii); } for (j = i + 1; j < N; j++) { double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (X, i, j, Aij); } } /* Convert A into an orthogonal matrix L */ for (j = N; j-- > 0;) { /* Householder column transformation to accumulate L */ double tj = gsl_vector_get (S, j); gsl_matrix_view m = gsl_matrix_submatrix (A, j, j, M - j, N - j); gsl_linalg_householder_hm1 (tj, &m.matrix); } /* unpack R into X V S */ gsl_linalg_SV_decomp (X, V, S, work); /* Multiply L by X, to obtain U = L X, stored in U */ { gsl_vector_view sum = gsl_vector_subvector (work, 0, N); for (i = 0; i < M; i++) { gsl_vector_view L_i = gsl_matrix_row (A, i); gsl_vector_set_zero (&sum.vector); for (j = 0; j < N; j++) { double Lij = gsl_vector_get (&L_i.vector, j); gsl_vector_view X_j = gsl_matrix_row (X, j); gsl_blas_daxpy (Lij, &X_j.vector, &sum.vector); } gsl_vector_memcpy (&L_i.vector, &sum.vector); } } return GSL_SUCCESS; } /* Solves the system A x = b using the SVD factorization * * A = U S V^T * * to obtain x. For M x N systems it finds the solution in the least * squares sense. */ int gsl_linalg_SV_solve (const gsl_matrix * U, const gsl_matrix * V, const gsl_vector * S, const gsl_vector * b, gsl_vector * x) { if (U->size1 != b->size) { GSL_ERROR ("first dimension of matrix U must size of vector b", GSL_EBADLEN); } else if (U->size2 != S->size) { GSL_ERROR ("length of vector S must match second dimension of matrix U", GSL_EBADLEN); } else if (V->size1 != V->size2) { GSL_ERROR ("matrix V must be square", GSL_ENOTSQR); } else if (S->size != V->size1) { GSL_ERROR ("length of vector S must match size of matrix V", GSL_EBADLEN); } else if (V->size2 != x->size) { GSL_ERROR ("size of matrix V must match size of vector x", GSL_EBADLEN); } else { const size_t N = U->size2; size_t i; gsl_vector *w = gsl_vector_calloc (N); gsl_blas_dgemv (CblasTrans, 1.0, U, b, 0.0, w); for (i = 0; i < N; i++) { double wi = gsl_vector_get (w, i); double alpha = gsl_vector_get (S, i); if (alpha != 0) alpha = 1.0 / alpha; gsl_vector_set (w, i, alpha * wi); } gsl_blas_dgemv (CblasNoTrans, 1.0, V, w, 0.0, x); gsl_vector_free (w); return GSL_SUCCESS; } } /* gsl_linalg_SV_leverage() Compute statistical leverage values of a matrix: h = diag(A (A^T A)^{-1} A^T) Inputs: U - U matrix in SVD decomposition h - (output) vector of leverages Return: success or error */ int gsl_linalg_SV_leverage(const gsl_matrix *U, gsl_vector *h) { const size_t M = U->size1; if (M != h->size) { GSL_ERROR ("first dimension of matrix U must match size of vector h", GSL_EBADLEN); } else { size_t i; for (i = 0; i < M; ++i) { gsl_vector_const_view v = gsl_matrix_const_row(U, i); double hi; gsl_blas_ddot(&v.vector, &v.vector, &hi); gsl_vector_set(h, i, hi); } return GSL_SUCCESS; } } /* gsl_linalg_SV_leverage() */ /* This is a the jacobi version */ /* Author: G. Jungman */ /* * Algorithm due to J.C. Nash, Compact Numerical Methods for * Computers (New York: Wiley and Sons, 1979), chapter 3. * See also Algorithm 4.1 in * James Demmel, Kresimir Veselic, "Jacobi's Method is more * accurate than QR", Lapack Working Note 15 (LAWN15), October 1989. * Available from netlib. * * Based on code by Arthur Kosowsky, Rutgers University * kosowsky@physics.rutgers.edu * * Another relevant paper is, P.P.M. De Rijk, "A One-Sided Jacobi * Algorithm for computing the singular value decomposition on a * vector computer", SIAM Journal of Scientific and Statistical * Computing, Vol 10, No 2, pp 359-371, March 1989. * */ int gsl_linalg_SV_decomp_jacobi (gsl_matrix * A, gsl_matrix * Q, gsl_vector * S) { if (A->size1 < A->size2) { /* FIXME: only implemented M>=N case so far */ GSL_ERROR ("svd of MxN matrix, Msize1 != A->size2) { GSL_ERROR ("square matrix Q must match second dimension of matrix A", GSL_EBADLEN); } else if (Q->size1 != Q->size2) { GSL_ERROR ("matrix Q must be square", GSL_ENOTSQR); } else if (S->size != A->size2) { GSL_ERROR ("length of vector S must match second dimension of matrix A", GSL_EBADLEN); } else { const size_t M = A->size1; const size_t N = A->size2; size_t i, j, k; /* Initialize the rotation counter and the sweep counter. */ int count = 1; int sweep = 0; int sweepmax = 5*N; double tolerance = 10 * M * GSL_DBL_EPSILON; /* Always do at least 12 sweeps. */ sweepmax = GSL_MAX (sweepmax, 12); /* Set Q to the identity matrix. */ gsl_matrix_set_identity (Q); /* Store the column error estimates in S, for use during the orthogonalization */ for (j = 0; j < N; j++) { gsl_vector_view cj = gsl_matrix_column (A, j); double sj = gsl_blas_dnrm2 (&cj.vector); gsl_vector_set(S, j, GSL_DBL_EPSILON * sj); } /* Orthogonalize A by plane rotations. */ while (count > 0 && sweep <= sweepmax) { /* Initialize rotation counter. */ count = N * (N - 1) / 2; for (j = 0; j < N - 1; j++) { for (k = j + 1; k < N; k++) { double a = 0.0; double b = 0.0; double p = 0.0; double q = 0.0; double cosine, sine; double v; double abserr_a, abserr_b; int sorted, orthog, noisya, noisyb; gsl_vector_view cj = gsl_matrix_column (A, j); gsl_vector_view ck = gsl_matrix_column (A, k); gsl_blas_ddot (&cj.vector, &ck.vector, &p); p *= 2.0 ; /* equation 9a: p = 2 x.y */ a = gsl_blas_dnrm2 (&cj.vector); b = gsl_blas_dnrm2 (&ck.vector); q = a * a - b * b; v = hypot(p, q); /* test for columns j,k orthogonal, or dominant errors */ abserr_a = gsl_vector_get(S,j); abserr_b = gsl_vector_get(S,k); sorted = (GSL_COERCE_DBL(a) >= GSL_COERCE_DBL(b)); orthog = (fabs (p) <= tolerance * GSL_COERCE_DBL(a * b)); noisya = (a < abserr_a); noisyb = (b < abserr_b); if (sorted && (orthog || noisya || noisyb)) { count--; continue; } /* calculate rotation angles */ if (v == 0 || !sorted) { cosine = 0.0; sine = 1.0; } else { cosine = sqrt((v + q) / (2.0 * v)); sine = p / (2.0 * v * cosine); } /* apply rotation to A */ for (i = 0; i < M; i++) { const double Aik = gsl_matrix_get (A, i, k); const double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (A, i, j, Aij * cosine + Aik * sine); gsl_matrix_set (A, i, k, -Aij * sine + Aik * cosine); } gsl_vector_set(S, j, fabs(cosine) * abserr_a + fabs(sine) * abserr_b); gsl_vector_set(S, k, fabs(sine) * abserr_a + fabs(cosine) * abserr_b); /* apply rotation to Q */ for (i = 0; i < N; i++) { const double Qij = gsl_matrix_get (Q, i, j); const double Qik = gsl_matrix_get (Q, i, k); gsl_matrix_set (Q, i, j, Qij * cosine + Qik * sine); gsl_matrix_set (Q, i, k, -Qij * sine + Qik * cosine); } } } /* Sweep completed. */ sweep++; } /* * Orthogonalization complete. Compute singular values. */ { double prev_norm = -1.0; for (j = 0; j < N; j++) { gsl_vector_view column = gsl_matrix_column (A, j); double norm = gsl_blas_dnrm2 (&column.vector); /* Determine if singular value is zero, according to the criteria used in the main loop above (i.e. comparison with norm of previous column). */ if (norm == 0.0 || prev_norm == 0.0 || (j > 0 && norm <= tolerance * prev_norm)) { gsl_vector_set (S, j, 0.0); /* singular */ gsl_vector_set_zero (&column.vector); /* annihilate column */ prev_norm = 0.0; } else { gsl_vector_set (S, j, norm); /* non-singular */ gsl_vector_scale (&column.vector, 1.0 / norm); /* normalize column */ prev_norm = norm; } } } if (count > 0) { /* reached sweep limit */ GSL_ERROR ("Jacobi iterations did not reach desired tolerance", GSL_ETOL); } return GSL_SUCCESS; } }