/* fft/signals_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "signals.h" int FUNCTION(fft_signal,complex_pulse) (const size_t k, const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]) { size_t j; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } /* gsl_complex pulse at position k, data[j] = z * delta_{jk} */ for (j = 0; j < n; j++) { REAL(data,stride,j) = 0.0; IMAG(data,stride,j) = 0.0; } REAL(data,stride,k % n) = z_real; IMAG(data,stride,k % n) = z_imag; /* fourier transform, fft[j] = z * exp(-2 pi i j k / n) */ for (j = 0; j < n; j++) { const double arg = -2 * M_PI * ((double) ((j * k) % n)) / ((double) n); const BASE w_real = (BASE)cos (arg); const BASE w_imag = (BASE)sin (arg); REAL(fft,stride,j) = w_real * z_real - w_imag * z_imag; IMAG(fft,stride,j) = w_real * z_imag + w_imag * z_real; } return 0; } int FUNCTION(fft_signal,complex_constant) (const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]) { size_t j; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } /* constant, data[j] = z */ for (j = 0; j < n; j++) { REAL(data,stride,j) = z_real; IMAG(data,stride,j) = z_imag; } /* fourier transform, fft[j] = n z delta_{j0} */ for (j = 0; j < n; j++) { REAL(fft,stride,j) = 0.0; IMAG(fft,stride,j) = 0.0; } REAL(fft,stride,0) = ((BASE) n) * z_real; IMAG(fft,stride,0) = ((BASE) n) * z_imag; return 0; } int FUNCTION(fft_signal,complex_exp) (const int k, const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]) { size_t j; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } /* exponential, data[j] = z * exp(2 pi i j k) */ for (j = 0; j < n; j++) { const double arg = 2 * M_PI * ((double) ((j * k) % n)) / ((double) n); const BASE w_real = (BASE)cos (arg); const BASE w_imag = (BASE)sin (arg); REAL(data,stride,j) = w_real * z_real - w_imag * z_imag; IMAG(data,stride,j) = w_real * z_imag + w_imag * z_real; } /* fourier transform, fft[j] = z * delta{(j - k),0} */ for (j = 0; j < n; j++) { REAL(fft,stride,j) = 0.0; IMAG(fft,stride,j) = 0.0; } { int freq; if (k <= 0) { freq = (n-k) % n ; } else { freq = (k % n); }; REAL(fft,stride,freq) = ((BASE) n) * z_real; IMAG(fft,stride,freq) = ((BASE) n) * z_imag; } return 0; } int FUNCTION(fft_signal,complex_exppair) (const int k1, const int k2, const size_t n, const size_t stride, const BASE z1_real, const BASE z1_imag, const BASE z2_real, const BASE z2_imag, BASE data[], BASE fft[]) { size_t j; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } /* exponential, data[j] = z1 * exp(2 pi i j k1) + z2 * exp(2 pi i j k2) */ for (j = 0; j < n; j++) { const double arg1 = 2 * M_PI * ((double) ((j * k1) % n)) / ((double) n); const BASE w1_real = (BASE)cos (arg1); const BASE w1_imag = (BASE)sin (arg1); const double arg2 = 2 * M_PI * ((double) ((j * k2) % n)) / ((double) n); const BASE w2_real = (BASE)cos (arg2); const BASE w2_imag = (BASE)sin (arg2); REAL(data,stride,j) = w1_real * z1_real - w1_imag * z1_imag; IMAG(data,stride,j) = w1_real * z1_imag + w1_imag * z1_real; REAL(data,stride,j) += w2_real * z2_real - w2_imag * z2_imag; IMAG(data,stride,j) += w2_real * z2_imag + w2_imag * z2_real; } /* fourier transform, fft[j] = z1 * delta{(j - k1),0} + z2 * delta{(j - k2,0)} */ for (j = 0; j < n; j++) { REAL(fft,stride,j) = 0.0; IMAG(fft,stride,j) = 0.0; } { int freq1, freq2; if (k1 <= 0) { freq1 = (n - k1) % n; } else { freq1 = (k1 % n); }; if (k2 <= 0) { freq2 = (n - k2) % n; } else { freq2 = (k2 % n); }; REAL(fft,stride,freq1) += ((BASE) n) * z1_real; IMAG(fft,stride,freq1) += ((BASE) n) * z1_imag; REAL(fft,stride,freq2) += ((BASE) n) * z2_real; IMAG(fft,stride,freq2) += ((BASE) n) * z2_imag; } return 0; } int FUNCTION(fft_signal,complex_noise) (const size_t n, const size_t stride, BASE data[], BASE fft[]) { size_t i; int status; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } for (i = 0; i < n; i++) { REAL(data,stride,i) = (BASE)urand(); IMAG(data,stride,i) = (BASE)urand(); } /* compute the dft */ status = FUNCTION(gsl_dft_complex,forward) (data, stride, n, fft); return status; } int FUNCTION(fft_signal,real_noise) (const size_t n, const size_t stride, BASE data[], BASE fft[]) { size_t i; int status; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } for (i = 0; i < n; i++) { REAL(data,stride,i) = (BASE)urand(); IMAG(data,stride,i) = 0.0; } /* compute the dft */ status = FUNCTION(gsl_dft_complex,forward) (data, stride, n, fft); return status; }