.. index::
single: quasi-random sequences
single: low discrepancy sequences
single: Sobol sequence
single: Niederreiter sequence
**********************
Quasi-Random Sequences
**********************
.. include:: include.rst
This chapter describes functions for generating quasi-random sequences
in arbitrary dimensions. A quasi-random sequence progressively covers a
:math:`d`-dimensional space with a set of points that are uniformly
distributed. Quasi-random sequences are also known as low-discrepancy
sequences. The quasi-random sequence generators use an interface that
is similar to the interface for random number generators, except that
seeding is not required---each generator produces a single sequence.
The functions described in this section are declared in the header file
:file:`gsl_qrng.h`.
Quasi-random number generator initialization
============================================
.. type:: gsl_qrng
This is a workspace for computing quasi-random sequences.
.. function:: gsl_qrng * gsl_qrng_alloc (const gsl_qrng_type * T, unsigned int d)
This function returns a pointer to a newly-created instance of a
quasi-random sequence generator of type :data:`T` and dimension :data:`d`.
If there is insufficient memory to create the generator then the
function returns a null pointer and the error handler is invoked with an
error code of :macro:`GSL_ENOMEM`.
.. function:: void gsl_qrng_free (gsl_qrng * q)
This function frees all the memory associated with the generator
:data:`q`.
.. function:: void gsl_qrng_init (gsl_qrng * q)
This function reinitializes the generator :data:`q` to its starting point.
Note that quasi-random sequences do not use a seed and always produce
the same set of values.
Sampling from a quasi-random number generator
=============================================
.. function:: int gsl_qrng_get (const gsl_qrng * q, double x[])
This function stores the next point from the sequence generator :data:`q`
in the array :data:`x`. The space available for :data:`x` must match the
dimension of the generator. The point :data:`x` will lie in the range
:math:`0 < x_i < 1` for each :math:`x_i`. |inlinefn|
Auxiliary quasi-random number generator functions
=================================================
.. function:: const char * gsl_qrng_name (const gsl_qrng * q)
This function returns a pointer to the name of the generator.
.. function:: size_t gsl_qrng_size (const gsl_qrng * q)
void * gsl_qrng_state (const gsl_qrng * q)
These functions return a pointer to the state of generator :data:`r` and
its size. You can use this information to access the state directly. For
example, the following code will write the state of a generator to a
stream::
void * state = gsl_qrng_state (q);
size_t n = gsl_qrng_size (q);
fwrite (state, n, 1, stream);
Saving and restoring quasi-random number generator state
========================================================
.. function:: int gsl_qrng_memcpy (gsl_qrng * dest, const gsl_qrng * src)
This function copies the quasi-random sequence generator :data:`src` into the
pre-existing generator :data:`dest`, making :data:`dest` into an exact copy
of :data:`src`. The two generators must be of the same type.
.. function:: gsl_qrng * gsl_qrng_clone (const gsl_qrng * q)
This function returns a pointer to a newly created generator which is an
exact copy of the generator :data:`q`.
Quasi-random number generator algorithms
========================================
The following quasi-random sequence algorithms are available,
.. type:: gsl_qrng_type
.. var:: gsl_qrng_niederreiter_2
This generator uses the algorithm described in Bratley, Fox,
Niederreiter, ACM Trans. Model. Comp. Sim. 2, 195 (1992). It is
valid up to 12 dimensions.
.. var:: gsl_qrng_sobol
This generator uses the Sobol sequence described in Antonov, Saleev,
USSR Comput. Maths. Math. Phys. 19, 252 (1980). It is valid up to
40 dimensions.
.. var:: gsl_qrng_halton
gsl_qrng_reversehalton
These generators use the Halton and reverse Halton sequences described
in J.H. Halton, Numerische Mathematik, 2, 84-90 (1960) and
B. Vandewoestyne and R. Cools Computational and Applied
Mathematics, 189, 1&2, 341-361 (2006). They are valid up to 1229
dimensions.
Examples
========
The following program prints the first 1024 points of the 2-dimensional
Sobol sequence.
.. include:: examples/qrng.c
:code:
Here is the output from the program::
$ ./a.out
0.50000 0.50000
0.75000 0.25000
0.25000 0.75000
0.37500 0.37500
0.87500 0.87500
0.62500 0.12500
0.12500 0.62500
....
It can be seen that successive points progressively fill-in the spaces
between previous points.
:numref:`fig_qrng` shows the distribution in the x-y plane of the first
1024 points from the Sobol sequence,
.. _fig_qrng:
.. figure:: /images/qrng.png
:scale: 60%
Distribution of the first 1024 points
from the quasi-random Sobol sequence
References
==========
The implementations of the quasi-random sequence routines are based on
the algorithms described in the following paper,
* P. Bratley and B.L. Fox and H. Niederreiter, "Algorithm 738: Programs
to Generate Niederreiter's Low-discrepancy Sequences", ACM
Transactions on Mathematical Software, Vol.: 20, No.: 4, December, 1994,
p.: 494--495.