Blame eigen/genherm.c

Packit 67cb25
/* eigen/genherm.c
Packit 67cb25
 * 
Packit 67cb25
 * Copyright (C) 2007 Patrick Alken
Packit 67cb25
 * 
Packit 67cb25
 * This program is free software; you can redistribute it and/or modify
Packit 67cb25
 * it under the terms of the GNU General Public License as published by
Packit 67cb25
 * the Free Software Foundation; either version 3 of the License, or (at
Packit 67cb25
 * your option) any later version.
Packit 67cb25
 * 
Packit 67cb25
 * This program is distributed in the hope that it will be useful, but
Packit 67cb25
 * WITHOUT ANY WARRANTY; without even the implied warranty of
Packit 67cb25
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Packit 67cb25
 * General Public License for more details.
Packit 67cb25
 * 
Packit 67cb25
 * You should have received a copy of the GNU General Public License
Packit 67cb25
 * along with this program; if not, write to the Free Software
Packit 67cb25
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
Packit 67cb25
 */
Packit 67cb25
Packit 67cb25
#include <stdlib.h>
Packit 67cb25
Packit 67cb25
#include <config.h>
Packit 67cb25
#include <gsl/gsl_eigen.h>
Packit 67cb25
#include <gsl/gsl_linalg.h>
Packit 67cb25
#include <gsl/gsl_math.h>
Packit 67cb25
#include <gsl/gsl_blas.h>
Packit 67cb25
#include <gsl/gsl_vector.h>
Packit 67cb25
#include <gsl/gsl_matrix.h>
Packit 67cb25
#include <gsl/gsl_complex.h>
Packit 67cb25
#include <gsl/gsl_complex_math.h>
Packit 67cb25
Packit 67cb25
/*
Packit 67cb25
 * This module computes the eigenvalues of a complex generalized
Packit 67cb25
 * hermitian-definite eigensystem A x = \lambda B x, where A and
Packit 67cb25
 * B are hermitian, and B is positive-definite.
Packit 67cb25
 */
Packit 67cb25
Packit 67cb25
/*
Packit 67cb25
gsl_eigen_genherm_alloc()
Packit 67cb25
Packit 67cb25
Allocate a workspace for solving the generalized hermitian-definite
Packit 67cb25
eigenvalue problem. The size of this workspace is O(3n).
Packit 67cb25
Packit 67cb25
Inputs: n - size of matrices
Packit 67cb25
Packit 67cb25
Return: pointer to workspace
Packit 67cb25
*/
Packit 67cb25
Packit 67cb25
gsl_eigen_genherm_workspace *
Packit 67cb25
gsl_eigen_genherm_alloc(const size_t n)
Packit 67cb25
{
Packit 67cb25
  gsl_eigen_genherm_workspace *w;
Packit 67cb25
Packit 67cb25
  if (n == 0)
Packit 67cb25
    {
Packit 67cb25
      GSL_ERROR_NULL ("matrix dimension must be positive integer",
Packit 67cb25
                      GSL_EINVAL);
Packit 67cb25
    }
Packit 67cb25
Packit 67cb25
  w = (gsl_eigen_genherm_workspace *) calloc (1, sizeof (gsl_eigen_genherm_workspace));
Packit 67cb25
Packit 67cb25
  if (w == 0)
Packit 67cb25
    {
Packit 67cb25
      GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
Packit 67cb25
    }
Packit 67cb25
Packit 67cb25
  w->size = n;
Packit 67cb25
Packit 67cb25
  w->herm_workspace_p = gsl_eigen_herm_alloc(n);
Packit 67cb25
  if (!w->herm_workspace_p)
Packit 67cb25
    {
Packit 67cb25
      gsl_eigen_genherm_free(w);
Packit 67cb25
      GSL_ERROR_NULL("failed to allocate space for herm workspace", GSL_ENOMEM);
Packit 67cb25
    }
Packit 67cb25
Packit 67cb25
  return (w);
Packit 67cb25
} /* gsl_eigen_genherm_alloc() */
Packit 67cb25
Packit 67cb25
/*
Packit 67cb25
gsl_eigen_genherm_free()
Packit 67cb25
  Free workspace w
Packit 67cb25
*/
Packit 67cb25
Packit 67cb25
void
Packit 67cb25
gsl_eigen_genherm_free (gsl_eigen_genherm_workspace * w)
Packit 67cb25
{
Packit 67cb25
  RETURN_IF_NULL (w);
Packit 67cb25
Packit 67cb25
  if (w->herm_workspace_p)
Packit 67cb25
    gsl_eigen_herm_free(w->herm_workspace_p);
Packit 67cb25
Packit 67cb25
  free(w);
Packit 67cb25
} /* gsl_eigen_genherm_free() */
Packit 67cb25
Packit 67cb25
/*
Packit 67cb25
gsl_eigen_genherm()
Packit 67cb25
Packit 67cb25
Solve the generalized hermitian-definite eigenvalue problem
Packit 67cb25
Packit 67cb25
A x = \lambda B x
Packit 67cb25
Packit 67cb25
for the eigenvalues \lambda.
Packit 67cb25
Packit 67cb25
Inputs: A    - complex hermitian matrix
Packit 67cb25
        B    - complex hermitian and positive definite matrix
Packit 67cb25
        eval - where to store eigenvalues
Packit 67cb25
        w    - workspace
Packit 67cb25
Packit 67cb25
Return: success or error
Packit 67cb25
*/
Packit 67cb25
Packit 67cb25
int
Packit 67cb25
gsl_eigen_genherm (gsl_matrix_complex * A, gsl_matrix_complex * B,
Packit 67cb25
                   gsl_vector * eval, gsl_eigen_genherm_workspace * w)
Packit 67cb25
{
Packit 67cb25
  const size_t N = A->size1;
Packit 67cb25
Packit 67cb25
  /* check matrix and vector sizes */
Packit 67cb25
Packit 67cb25
  if (N != A->size2)
Packit 67cb25
    {
Packit 67cb25
      GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
Packit 67cb25
    }
Packit 67cb25
  else if ((N != B->size1) || (N != B->size2))
Packit 67cb25
    {
Packit 67cb25
      GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN);
Packit 67cb25
    }
Packit 67cb25
  else if (eval->size != N)
Packit 67cb25
    {
Packit 67cb25
      GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
Packit 67cb25
    }
Packit 67cb25
  else if (w->size != N)
Packit 67cb25
    {
Packit 67cb25
      GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN);
Packit 67cb25
    }
Packit 67cb25
  else
Packit 67cb25
    {
Packit 67cb25
      int s;
Packit 67cb25
Packit 67cb25
      /* compute Cholesky factorization of B */
Packit 67cb25
      s = gsl_linalg_complex_cholesky_decomp(B);
Packit 67cb25
      if (s != GSL_SUCCESS)
Packit 67cb25
        return s; /* B is not positive definite */
Packit 67cb25
Packit 67cb25
      /* transform to standard hermitian eigenvalue problem */
Packit 67cb25
      gsl_eigen_genherm_standardize(A, B);
Packit 67cb25
Packit 67cb25
      s = gsl_eigen_herm(A, eval, w->herm_workspace_p);
Packit 67cb25
Packit 67cb25
      return s;
Packit 67cb25
    }
Packit 67cb25
} /* gsl_eigen_genherm() */
Packit 67cb25
Packit 67cb25
/*
Packit 67cb25
gsl_eigen_genherm_standardize()
Packit 67cb25
  Reduce the generalized hermitian-definite eigenproblem to
Packit 67cb25
the standard hermitian eigenproblem by computing
Packit 67cb25
Packit 67cb25
C = L^{-1} A L^{-H}
Packit 67cb25
Packit 67cb25
where L L^H is the Cholesky decomposition of B
Packit 67cb25
Packit 67cb25
Inputs: A - (input/output) complex hermitian matrix
Packit 67cb25
        B - complex hermitian, positive definite matrix in Cholesky form
Packit 67cb25
Packit 67cb25
Return: success
Packit 67cb25
Packit 67cb25
Notes: A is overwritten by L^{-1} A L^{-H}
Packit 67cb25
*/
Packit 67cb25
Packit 67cb25
int
Packit 67cb25
gsl_eigen_genherm_standardize(gsl_matrix_complex *A,
Packit 67cb25
                              const gsl_matrix_complex *B)
Packit 67cb25
{
Packit 67cb25
  const size_t N = A->size1;
Packit 67cb25
  size_t i;
Packit 67cb25
  double a, b;
Packit 67cb25
  gsl_complex y, z;
Packit 67cb25
Packit 67cb25
  GSL_SET_IMAG(&z, 0.0);
Packit 67cb25
Packit 67cb25
  for (i = 0; i < N; ++i)
Packit 67cb25
    {
Packit 67cb25
      /* update lower triangle of A(i:n, i:n) */
Packit 67cb25
Packit 67cb25
      y = gsl_matrix_complex_get(A, i, i);
Packit 67cb25
      a = GSL_REAL(y);
Packit 67cb25
      y = gsl_matrix_complex_get(B, i, i);
Packit 67cb25
      b = GSL_REAL(y);
Packit 67cb25
      a /= b * b;
Packit 67cb25
      GSL_SET_REAL(&z, a);
Packit 67cb25
      gsl_matrix_complex_set(A, i, i, z);
Packit 67cb25
Packit 67cb25
      if (i < N - 1)
Packit 67cb25
        {
Packit 67cb25
          gsl_vector_complex_view ai =
Packit 67cb25
            gsl_matrix_complex_subcolumn(A, i, i + 1, N - i - 1);
Packit 67cb25
          gsl_matrix_complex_view ma =
Packit 67cb25
            gsl_matrix_complex_submatrix(A, i + 1, i + 1, N - i - 1, N - i - 1);
Packit 67cb25
          gsl_vector_complex_const_view bi =
Packit 67cb25
            gsl_matrix_complex_const_subcolumn(B, i, i + 1, N - i - 1);
Packit 67cb25
          gsl_matrix_complex_const_view mb =
Packit 67cb25
            gsl_matrix_complex_const_submatrix(B, i + 1, i + 1, N - i - 1, N - i - 1);
Packit 67cb25
Packit 67cb25
          gsl_blas_zdscal(1.0 / b, &ai.vector);
Packit 67cb25
Packit 67cb25
          GSL_SET_REAL(&z, -0.5 * a);
Packit 67cb25
          gsl_blas_zaxpy(z, &bi.vector, &ai.vector);
Packit 67cb25
Packit 67cb25
          gsl_blas_zher2(CblasLower,
Packit 67cb25
                         GSL_COMPLEX_NEGONE,
Packit 67cb25
                         &ai.vector,
Packit 67cb25
                         &bi.vector,
Packit 67cb25
                         &ma.matrix);
Packit 67cb25
Packit 67cb25
          gsl_blas_zaxpy(z, &bi.vector, &ai.vector);
Packit 67cb25
Packit 67cb25
          gsl_blas_ztrsv(CblasLower,
Packit 67cb25
                         CblasNoTrans,
Packit 67cb25
                         CblasNonUnit,
Packit 67cb25
                         &mb.matrix,
Packit 67cb25
                         &ai.vector);
Packit 67cb25
        }
Packit 67cb25
    }
Packit 67cb25
Packit 67cb25
  return GSL_SUCCESS;
Packit 67cb25
} /* gsl_eigen_genherm_standardize() */