/* Test mpz_gcd, mpz_gcdext, and mpz_gcd_ui. Copyright 1991, 1993, 1994, 1996, 1997, 2000-2005, 2008, 2009, 2012 Free Software Foundation, Inc. This file is part of the GNU MP Library test suite. The GNU MP Library test suite is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MP Library test suite is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */ #include #include #include "gmp.h" #include "gmp-impl.h" #include "tests.h" void one_test (mpz_t, mpz_t, mpz_t, int); void debug_mp (mpz_t, int); static int gcdext_valid_p (const mpz_t, const mpz_t, const mpz_t, const mpz_t); /* Keep one_test's variables global, so that we don't need to reinitialize them for each test. */ mpz_t gcd1, gcd2, s, temp1, temp2, temp3; #define MAX_SCHOENHAGE_THRESHOLD HGCD_REDUCE_THRESHOLD /* Define this to make all operands be large enough for Schoenhage gcd to be used. */ #ifndef WHACK_SCHOENHAGE #define WHACK_SCHOENHAGE 0 #endif #if WHACK_SCHOENHAGE #define MIN_OPERAND_BITSIZE (MAX_SCHOENHAGE_THRESHOLD * GMP_NUMB_BITS) #else #define MIN_OPERAND_BITSIZE 1 #endif void check_data (void) { static const struct { const char *a; const char *b; const char *want; } data[] = { /* This tickled a bug in gmp 4.1.2 mpn/x86/k6/gcd_finda.asm. */ { "0x3FFC000007FFFFFFFFFF00000000003F83FFFFFFFFFFFFFFF80000000000000001", "0x1FFE0007FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC000000000000000000000001", "5" } }; mpz_t a, b, got, want; int i; mpz_inits (a, b, got, want, NULL); for (i = 0; i < numberof (data); i++) { mpz_set_str_or_abort (a, data[i].a, 0); mpz_set_str_or_abort (b, data[i].b, 0); mpz_set_str_or_abort (want, data[i].want, 0); mpz_gcd (got, a, b); MPZ_CHECK_FORMAT (got); if (mpz_cmp (got, want) != 0) { printf ("mpz_gcd wrong on data[%d]\n", i); printf (" a %s\n", data[i].a); printf (" b %s\n", data[i].b); mpz_trace (" a", a); mpz_trace (" b", b); mpz_trace (" want", want); mpz_trace (" got ", got); abort (); } } mpz_clears (a, b, got, want, NULL); } void make_chain_operands (mpz_t ref, mpz_t a, mpz_t b, gmp_randstate_t rs, int nb1, int nb2, int chain_len) { mpz_t bs, temp1, temp2; int j; mpz_inits (bs, temp1, temp2, NULL); /* Generate a division chain backwards, allowing otherwise unlikely huge quotients. */ mpz_set_ui (a, 0); mpz_urandomb (bs, rs, 32); mpz_urandomb (bs, rs, mpz_get_ui (bs) % nb1 + 1); mpz_rrandomb (b, rs, mpz_get_ui (bs)); mpz_add_ui (b, b, 1); mpz_set (ref, b); for (j = 0; j < chain_len; j++) { mpz_urandomb (bs, rs, 32); mpz_urandomb (bs, rs, mpz_get_ui (bs) % nb2 + 1); mpz_rrandomb (temp2, rs, mpz_get_ui (bs) + 1); mpz_add_ui (temp2, temp2, 1); mpz_mul (temp1, b, temp2); mpz_add (a, a, temp1); mpz_urandomb (bs, rs, 32); mpz_urandomb (bs, rs, mpz_get_ui (bs) % nb2 + 1); mpz_rrandomb (temp2, rs, mpz_get_ui (bs) + 1); mpz_add_ui (temp2, temp2, 1); mpz_mul (temp1, a, temp2); mpz_add (b, b, temp1); } mpz_clears (bs, temp1, temp2, NULL); } /* Test operands from a table of seed data. This variant creates the operands using plain ol' mpz_rrandomb. This is a hack for better coverage of the gcd code, which depends on that the random number generators give the exact numbers we expect. */ void check_kolmo1 (void) { static const struct { unsigned int seed; int nb; const char *want; } data[] = { { 59618, 38208, "5"}, { 76521, 49024, "3"}, { 85869, 54976, "1"}, { 99449, 63680, "1"}, {112453, 72000, "1"} }; gmp_randstate_t rs; mpz_t bs, a, b, want; int i, unb, vnb, nb; gmp_randinit_default (rs); mpz_inits (bs, a, b, want, NULL); for (i = 0; i < numberof (data); i++) { nb = data[i].nb; gmp_randseed_ui (rs, data[i].seed); mpz_urandomb (bs, rs, 32); unb = mpz_get_ui (bs) % nb; mpz_urandomb (bs, rs, 32); vnb = mpz_get_ui (bs) % nb; mpz_rrandomb (a, rs, unb); mpz_rrandomb (b, rs, vnb); mpz_set_str_or_abort (want, data[i].want, 0); one_test (a, b, want, -1); } mpz_clears (bs, a, b, want, NULL); gmp_randclear (rs); } /* Test operands from a table of seed data. This variant creates the operands using a division chain. This is a hack for better coverage of the gcd code, which depends on that the random number generators give the exact numbers we expect. */ void check_kolmo2 (void) { static const struct { unsigned int seed; int nb, chain_len; } data[] = { { 917, 15, 5 }, { 1032, 18, 6 }, { 1167, 18, 6 }, { 1174, 18, 6 }, { 1192, 18, 6 }, }; gmp_randstate_t rs; mpz_t bs, a, b, want; int i; gmp_randinit_default (rs); mpz_inits (bs, a, b, want, NULL); for (i = 0; i < numberof (data); i++) { gmp_randseed_ui (rs, data[i].seed); make_chain_operands (want, a, b, rs, data[i].nb, data[i].nb, data[i].chain_len); one_test (a, b, want, -1); } mpz_clears (bs, a, b, want, NULL); gmp_randclear (rs); } int main (int argc, char **argv) { mpz_t op1, op2, ref; int i, chain_len; gmp_randstate_ptr rands; mpz_t bs; unsigned long bsi, size_range; long int reps = 200; tests_start (); TESTS_REPS (reps, argv, argc); rands = RANDS; mpz_inits (bs, op1, op2, ref, gcd1, gcd2, temp1, temp2, temp3, s, NULL); check_data (); check_kolmo1 (); check_kolmo2 (); /* Testcase to exercise the u0 == u1 case in mpn_gcdext_lehmer_n. */ mpz_set_ui (op2, GMP_NUMB_MAX); /* FIXME: Huge limb doesn't always fit */ mpz_mul_2exp (op1, op2, 100); mpz_add (op1, op1, op2); mpz_mul_ui (op2, op2, 2); one_test (op1, op2, NULL, -1); for (i = 0; i < reps; i++) { /* Generate plain operands with unknown gcd. These types of operands have proven to trigger certain bugs in development versions of the gcd code. The "hgcd->row[3].rsize > M" ASSERT is not triggered by the division chain code below, but that is most likely just a result of that other ASSERTs are triggered before it. */ mpz_urandomb (bs, rands, 32); size_range = mpz_get_ui (bs) % 17 + 2; mpz_urandomb (bs, rands, size_range); mpz_rrandomb (op1, rands, mpz_get_ui (bs) + MIN_OPERAND_BITSIZE); mpz_urandomb (bs, rands, size_range); mpz_rrandomb (op2, rands, mpz_get_ui (bs) + MIN_OPERAND_BITSIZE); mpz_urandomb (bs, rands, 8); bsi = mpz_get_ui (bs); if ((bsi & 0x3c) == 4) mpz_mul (op1, op1, op2); /* make op1 a multiple of op2 */ else if ((bsi & 0x3c) == 8) mpz_mul (op2, op1, op2); /* make op2 a multiple of op1 */ if ((bsi & 1) != 0) mpz_neg (op1, op1); if ((bsi & 2) != 0) mpz_neg (op2, op2); one_test (op1, op2, NULL, i); /* Generate a division chain backwards, allowing otherwise unlikely huge quotients. */ mpz_urandomb (bs, rands, 32); chain_len = mpz_get_ui (bs) % LOG2C (GMP_NUMB_BITS * MAX_SCHOENHAGE_THRESHOLD); mpz_urandomb (bs, rands, 32); chain_len = mpz_get_ui (bs) % (1 << chain_len) / 32; make_chain_operands (ref, op1, op2, rands, 16, 12, chain_len); one_test (op1, op2, ref, i); } mpz_clears (bs, op1, op2, ref, gcd1, gcd2, temp1, temp2, temp3, s, NULL); tests_end (); exit (0); } void debug_mp (mpz_t x, int base) { mpz_out_str (stderr, base, x); fputc ('\n', stderr); } void one_test (mpz_t op1, mpz_t op2, mpz_t ref, int i) { /* printf ("%d %d %d\n", SIZ (op1), SIZ (op2), ref != NULL ? SIZ (ref) : 0); fflush (stdout); */ /* fprintf (stderr, "op1="); debug_mp (op1, -16); fprintf (stderr, "op2="); debug_mp (op2, -16); */ mpz_gcdext (gcd1, s, NULL, op1, op2); MPZ_CHECK_FORMAT (gcd1); MPZ_CHECK_FORMAT (s); if (ref && mpz_cmp (ref, gcd1) != 0) { fprintf (stderr, "ERROR in test %d\n", i); fprintf (stderr, "mpz_gcdext returned incorrect result\n"); fprintf (stderr, "op1="); debug_mp (op1, -16); fprintf (stderr, "op2="); debug_mp (op2, -16); fprintf (stderr, "expected result:\n"); debug_mp (ref, -16); fprintf (stderr, "mpz_gcdext returns:\n");debug_mp (gcd1, -16); abort (); } if (!gcdext_valid_p(op1, op2, gcd1, s)) { fprintf (stderr, "ERROR in test %d\n", i); fprintf (stderr, "mpz_gcdext returned invalid result\n"); fprintf (stderr, "op1="); debug_mp (op1, -16); fprintf (stderr, "op2="); debug_mp (op2, -16); fprintf (stderr, "mpz_gcdext returns:\n");debug_mp (gcd1, -16); fprintf (stderr, "s="); debug_mp (s, -16); abort (); } mpz_gcd (gcd2, op1, op2); MPZ_CHECK_FORMAT (gcd2); if (mpz_cmp (gcd2, gcd1) != 0) { fprintf (stderr, "ERROR in test %d\n", i); fprintf (stderr, "mpz_gcd returned incorrect result\n"); fprintf (stderr, "op1="); debug_mp (op1, -16); fprintf (stderr, "op2="); debug_mp (op2, -16); fprintf (stderr, "expected result:\n"); debug_mp (gcd1, -16); fprintf (stderr, "mpz_gcd returns:\n"); debug_mp (gcd2, -16); abort (); } /* This should probably move to t-gcd_ui.c */ if (mpz_fits_ulong_p (op1) || mpz_fits_ulong_p (op2)) { if (mpz_fits_ulong_p (op1)) mpz_gcd_ui (gcd2, op2, mpz_get_ui (op1)); else mpz_gcd_ui (gcd2, op1, mpz_get_ui (op2)); if (mpz_cmp (gcd2, gcd1)) { fprintf (stderr, "ERROR in test %d\n", i); fprintf (stderr, "mpz_gcd_ui returned incorrect result\n"); fprintf (stderr, "op1="); debug_mp (op1, -16); fprintf (stderr, "op2="); debug_mp (op2, -16); fprintf (stderr, "expected result:\n"); debug_mp (gcd1, -16); fprintf (stderr, "mpz_gcd_ui returns:\n"); debug_mp (gcd2, -16); abort (); } } mpz_gcdext (gcd2, temp1, temp2, op1, op2); MPZ_CHECK_FORMAT (gcd2); MPZ_CHECK_FORMAT (temp1); MPZ_CHECK_FORMAT (temp2); mpz_mul (temp1, temp1, op1); mpz_mul (temp2, temp2, op2); mpz_add (temp1, temp1, temp2); if (mpz_cmp (gcd1, gcd2) != 0 || mpz_cmp (gcd2, temp1) != 0) { fprintf (stderr, "ERROR in test %d\n", i); fprintf (stderr, "mpz_gcdext returned incorrect result\n"); fprintf (stderr, "op1="); debug_mp (op1, -16); fprintf (stderr, "op2="); debug_mp (op2, -16); fprintf (stderr, "expected result:\n"); debug_mp (gcd1, -16); fprintf (stderr, "mpz_gcdext returns:\n");debug_mp (gcd2, -16); abort (); } } /* Called when g is supposed to be gcd(a,b), and g = s a + t b, for some t. Uses temp1, temp2 and temp3. */ static int gcdext_valid_p (const mpz_t a, const mpz_t b, const mpz_t g, const mpz_t s) { /* It's not clear that gcd(0,0) is well defined, but we allow it and require that gcd(0,0) = 0. */ if (mpz_sgn (g) < 0) return 0; if (mpz_sgn (a) == 0) { /* Must have g == abs (b). Any value for s is in some sense "correct", but it makes sense to require that s == 0. */ return mpz_cmpabs (g, b) == 0 && mpz_sgn (s) == 0; } else if (mpz_sgn (b) == 0) { /* Must have g == abs (a), s == sign (a) */ return mpz_cmpabs (g, a) == 0 && mpz_cmp_si (s, mpz_sgn (a)) == 0; } if (mpz_sgn (g) <= 0) return 0; mpz_tdiv_qr (temp1, temp3, a, g); if (mpz_sgn (temp3) != 0) return 0; mpz_tdiv_qr (temp2, temp3, b, g); if (mpz_sgn (temp3) != 0) return 0; /* Require that 2 |s| < |b/g|, or |s| == 1. */ if (mpz_cmpabs_ui (s, 1) > 0) { mpz_mul_2exp (temp3, s, 1); if (mpz_cmpabs (temp3, temp2) >= 0) return 0; } /* Compute the other cofactor. */ mpz_mul(temp2, s, a); mpz_sub(temp2, g, temp2); mpz_tdiv_qr(temp2, temp3, temp2, b); if (mpz_sgn (temp3) != 0) return 0; /* Require that 2 |t| < |a/g| or |t| == 1*/ if (mpz_cmpabs_ui (temp2, 1) > 0) { mpz_mul_2exp (temp2, temp2, 1); if (mpz_cmpabs (temp2, temp1) >= 0) return 0; } return 1; }