/* mpn_toom33_mul -- Multiply {ap,an} and {p,bn} where an and bn are close in size. Or more accurately, bn <= an < (3/2)bn. Contributed to the GNU project by Torbjorn Granlund. Additional improvements by Marco Bodrato. THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. Copyright 2006-2008, 2010, 2012 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */ #include "gmp.h" #include "gmp-impl.h" /* Evaluate in: -1, 0, +1, +2, +inf <-s--><--n--><--n--> ____ ______ ______ |_a2_|___a1_|___a0_| |b2_|___b1_|___b0_| <-t-><--n--><--n--> v0 = a0 * b0 # A(0)*B(0) v1 = (a0+ a1+ a2)*(b0+ b1+ b2) # A(1)*B(1) ah <= 2 bh <= 2 vm1 = (a0- a1+ a2)*(b0- b1+ b2) # A(-1)*B(-1) |ah| <= 1 bh <= 1 v2 = (a0+2a1+4a2)*(b0+2b1+4b2) # A(2)*B(2) ah <= 6 bh <= 6 vinf= a2 * b2 # A(inf)*B(inf) */ #if TUNE_PROGRAM_BUILD || WANT_FAT_BINARY #define MAYBE_mul_basecase 1 #define MAYBE_mul_toom33 1 #else #define MAYBE_mul_basecase \ (MUL_TOOM33_THRESHOLD < 3 * MUL_TOOM22_THRESHOLD) #define MAYBE_mul_toom33 \ (MUL_TOOM44_THRESHOLD >= 3 * MUL_TOOM33_THRESHOLD) #endif /* FIXME: TOOM33_MUL_N_REC is not quite right for a balanced multiplication at the infinity point. We may have MAYBE_mul_basecase == 0, and still get s just below MUL_TOOM22_THRESHOLD. If MUL_TOOM33_THRESHOLD == 7, we can even get s == 1 and mpn_toom22_mul will crash. */ #define TOOM33_MUL_N_REC(p, a, b, n, ws) \ do { \ if (MAYBE_mul_basecase \ && BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD)) \ mpn_mul_basecase (p, a, n, b, n); \ else if (! MAYBE_mul_toom33 \ || BELOW_THRESHOLD (n, MUL_TOOM33_THRESHOLD)) \ mpn_toom22_mul (p, a, n, b, n, ws); \ else \ mpn_toom33_mul (p, a, n, b, n, ws); \ } while (0) void mpn_toom33_mul (mp_ptr pp, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn, mp_ptr scratch) { const int __gmpn_cpuvec_initialized = 1; mp_size_t n, s, t; int vm1_neg; mp_limb_t cy, vinf0; mp_ptr gp; mp_ptr as1, asm1, as2; mp_ptr bs1, bsm1, bs2; #define a0 ap #define a1 (ap + n) #define a2 (ap + 2*n) #define b0 bp #define b1 (bp + n) #define b2 (bp + 2*n) n = (an + 2) / (size_t) 3; s = an - 2 * n; t = bn - 2 * n; ASSERT (an >= bn); ASSERT (0 < s && s <= n); ASSERT (0 < t && t <= n); as1 = scratch + 4 * n + 4; asm1 = scratch + 2 * n + 2; as2 = pp + n + 1; bs1 = pp; bsm1 = scratch + 3 * n + 3; /* we need 4n+4 <= 4n+s+t */ bs2 = pp + 2 * n + 2; gp = scratch; vm1_neg = 0; /* Compute as1 and asm1. */ cy = mpn_add (gp, a0, n, a2, s); #if HAVE_NATIVE_mpn_add_n_sub_n if (cy == 0 && mpn_cmp (gp, a1, n) < 0) { cy = mpn_add_n_sub_n (as1, asm1, a1, gp, n); as1[n] = cy >> 1; asm1[n] = 0; vm1_neg = 1; } else { mp_limb_t cy2; cy2 = mpn_add_n_sub_n (as1, asm1, gp, a1, n); as1[n] = cy + (cy2 >> 1); asm1[n] = cy - (cy2 & 1); } #else as1[n] = cy + mpn_add_n (as1, gp, a1, n); if (cy == 0 && mpn_cmp (gp, a1, n) < 0) { mpn_sub_n (asm1, a1, gp, n); asm1[n] = 0; vm1_neg = 1; } else { cy -= mpn_sub_n (asm1, gp, a1, n); asm1[n] = cy; } #endif /* Compute as2. */ #if HAVE_NATIVE_mpn_rsblsh1_n cy = mpn_add_n (as2, a2, as1, s); if (s != n) cy = mpn_add_1 (as2 + s, as1 + s, n - s, cy); cy += as1[n]; cy = 2 * cy + mpn_rsblsh1_n (as2, a0, as2, n); #else #if HAVE_NATIVE_mpn_addlsh1_n cy = mpn_addlsh1_n (as2, a1, a2, s); if (s != n) cy = mpn_add_1 (as2 + s, a1 + s, n - s, cy); cy = 2 * cy + mpn_addlsh1_n (as2, a0, as2, n); #else cy = mpn_add_n (as2, a2, as1, s); if (s != n) cy = mpn_add_1 (as2 + s, as1 + s, n - s, cy); cy += as1[n]; cy = 2 * cy + mpn_lshift (as2, as2, n, 1); cy -= mpn_sub_n (as2, as2, a0, n); #endif #endif as2[n] = cy; /* Compute bs1 and bsm1. */ cy = mpn_add (gp, b0, n, b2, t); #if HAVE_NATIVE_mpn_add_n_sub_n if (cy == 0 && mpn_cmp (gp, b1, n) < 0) { cy = mpn_add_n_sub_n (bs1, bsm1, b1, gp, n); bs1[n] = cy >> 1; bsm1[n] = 0; vm1_neg ^= 1; } else { mp_limb_t cy2; cy2 = mpn_add_n_sub_n (bs1, bsm1, gp, b1, n); bs1[n] = cy + (cy2 >> 1); bsm1[n] = cy - (cy2 & 1); } #else bs1[n] = cy + mpn_add_n (bs1, gp, b1, n); if (cy == 0 && mpn_cmp (gp, b1, n) < 0) { mpn_sub_n (bsm1, b1, gp, n); bsm1[n] = 0; vm1_neg ^= 1; } else { cy -= mpn_sub_n (bsm1, gp, b1, n); bsm1[n] = cy; } #endif /* Compute bs2. */ #if HAVE_NATIVE_mpn_rsblsh1_n cy = mpn_add_n (bs2, b2, bs1, t); if (t != n) cy = mpn_add_1 (bs2 + t, bs1 + t, n - t, cy); cy += bs1[n]; cy = 2 * cy + mpn_rsblsh1_n (bs2, b0, bs2, n); #else #if HAVE_NATIVE_mpn_addlsh1_n cy = mpn_addlsh1_n (bs2, b1, b2, t); if (t != n) cy = mpn_add_1 (bs2 + t, b1 + t, n - t, cy); cy = 2 * cy + mpn_addlsh1_n (bs2, b0, bs2, n); #else cy = mpn_add_n (bs2, bs1, b2, t); if (t != n) cy = mpn_add_1 (bs2 + t, bs1 + t, n - t, cy); cy += bs1[n]; cy = 2 * cy + mpn_lshift (bs2, bs2, n, 1); cy -= mpn_sub_n (bs2, bs2, b0, n); #endif #endif bs2[n] = cy; ASSERT (as1[n] <= 2); ASSERT (bs1[n] <= 2); ASSERT (asm1[n] <= 1); ASSERT (bsm1[n] <= 1); ASSERT (as2[n] <= 6); ASSERT (bs2[n] <= 6); #define v0 pp /* 2n */ #define v1 (pp + 2 * n) /* 2n+1 */ #define vinf (pp + 4 * n) /* s+t */ #define vm1 scratch /* 2n+1 */ #define v2 (scratch + 2 * n + 1) /* 2n+2 */ #define scratch_out (scratch + 5 * n + 5) /* vm1, 2n+1 limbs */ #ifdef SMALLER_RECURSION TOOM33_MUL_N_REC (vm1, asm1, bsm1, n, scratch_out); cy = 0; if (asm1[n] != 0) cy = bsm1[n] + mpn_add_n (vm1 + n, vm1 + n, bsm1, n); if (bsm1[n] != 0) cy += mpn_add_n (vm1 + n, vm1 + n, asm1, n); vm1[2 * n] = cy; #else TOOM33_MUL_N_REC (vm1, asm1, bsm1, n + 1, scratch_out); #endif TOOM33_MUL_N_REC (v2, as2, bs2, n + 1, scratch_out); /* v2, 2n+1 limbs */ /* vinf, s+t limbs */ if (s > t) mpn_mul (vinf, a2, s, b2, t); else TOOM33_MUL_N_REC (vinf, a2, b2, s, scratch_out); vinf0 = vinf[0]; /* v1 overlaps with this */ #ifdef SMALLER_RECURSION /* v1, 2n+1 limbs */ TOOM33_MUL_N_REC (v1, as1, bs1, n, scratch_out); if (as1[n] == 1) { cy = bs1[n] + mpn_add_n (v1 + n, v1 + n, bs1, n); } else if (as1[n] != 0) { #if HAVE_NATIVE_mpn_addlsh1_n cy = 2 * bs1[n] + mpn_addlsh1_n (v1 + n, v1 + n, bs1, n); #else cy = 2 * bs1[n] + mpn_addmul_1 (v1 + n, bs1, n, CNST_LIMB(2)); #endif } else cy = 0; if (bs1[n] == 1) { cy += mpn_add_n (v1 + n, v1 + n, as1, n); } else if (bs1[n] != 0) { #if HAVE_NATIVE_mpn_addlsh1_n cy += mpn_addlsh1_n (v1 + n, v1 + n, as1, n); #else cy += mpn_addmul_1 (v1 + n, as1, n, CNST_LIMB(2)); #endif } v1[2 * n] = cy; #else cy = vinf[1]; TOOM33_MUL_N_REC (v1, as1, bs1, n + 1, scratch_out); vinf[1] = cy; #endif TOOM33_MUL_N_REC (v0, ap, bp, n, scratch_out); /* v0, 2n limbs */ mpn_toom_interpolate_5pts (pp, v2, vm1, n, s + t, vm1_neg, vinf0); }