/* Functions needed for bootstrapping the gmp build, based on mini-gmp. Copyright 2001, 2002, 2004, 2011, 2012 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */ #include "mini-gmp/mini-gmp.c" #define MIN(l,o) ((l) < (o) ? (l) : (o)) #define PTR(x) ((x)->_mp_d) #define SIZ(x) ((x)->_mp_size) #define xmalloc gmp_default_alloc int isprime (unsigned long int t) { unsigned long int q, r, d; if (t < 32) return (0xa08a28acUL >> t) & 1; if ((t & 1) == 0) return 0; if (t % 3 == 0) return 0; if (t % 5 == 0) return 0; if (t % 7 == 0) return 0; for (d = 11;;) { q = t / d; r = t - q * d; if (q < d) return 1; if (r == 0) break; d += 2; q = t / d; r = t - q * d; if (q < d) return 1; if (r == 0) break; d += 4; } return 0; } int log2_ceil (int n) { int e; assert (n >= 1); for (e = 0; ; e++) if ((1 << e) >= n) break; return e; } /* Set inv to the inverse of d, in the style of invert_limb, ie. for udiv_qrnnd_preinv. */ void mpz_preinv_invert (mpz_t inv, mpz_t d, int numb_bits) { mpz_t t; int norm; assert (SIZ(d) > 0); norm = numb_bits - mpz_sizeinbase (d, 2); assert (norm >= 0); mpz_init_set_ui (t, 1L); mpz_mul_2exp (t, t, 2*numb_bits - norm); mpz_tdiv_q (inv, t, d); mpz_set_ui (t, 1L); mpz_mul_2exp (t, t, numb_bits); mpz_sub (inv, inv, t); mpz_clear (t); } /* Calculate r satisfying r*d == 1 mod 2^n. */ void mpz_invert_2exp (mpz_t r, mpz_t a, unsigned long n) { unsigned long i; mpz_t inv, prod; assert (mpz_odd_p (a)); mpz_init_set_ui (inv, 1L); mpz_init (prod); for (i = 1; i < n; i++) { mpz_mul (prod, inv, a); if (mpz_tstbit (prod, i) != 0) mpz_setbit (inv, i); } mpz_mul (prod, inv, a); mpz_tdiv_r_2exp (prod, prod, n); assert (mpz_cmp_ui (prod, 1L) == 0); mpz_set (r, inv); mpz_clear (inv); mpz_clear (prod); } /* Calculate inv satisfying r*a == 1 mod 2^n. */ void mpz_invert_ui_2exp (mpz_t r, unsigned long a, unsigned long n) { mpz_t az; mpz_init_set_ui (az, a); mpz_invert_2exp (r, az, n); mpz_clear (az); }