dnl AMD64 mpn_com optimised for CPUs with fast SSE copying and SSSE3. dnl Copyright 2012, 2013, 2015 Free Software Foundation, Inc. dnl Contributed to the GNU project by Torbjorn Granlund. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C cycles/limb cycles/limb cycles/limb good C aligned unaligned best seen for cpu? C AMD K8,K9 2.0 illop 1.0/1.0 N C AMD K10 0.85 illop Y/N C AMD bull 1.39 ? 1.45 Y/N C AMD pile 0.8-1.4 0.7-1.4 Y C AMD steam C AMD excavator C AMD bobcat 1.97 ? 8.17 1.5/1.5 N C AMD jaguar 1.02 1.02 0.91/0.91 N C Intel P4 2.26 illop Y/N C Intel core 0.52 0.95 opt/0.74 Y C Intel NHM 0.52 0.65 opt/opt Y C Intel SBR 0.51 0.65 opt/opt Y C Intel IBR 0.50 0.64 opt/0.57 Y C Intel HWL 0.51 0.58 opt/opt Y C Intel BWL 0.57 0.69 opt/0.65 Y C Intel atom 1.16 1.70 opt/opt Y C Intel SLM 1.02 1.52 N C VIA nano 1.09 1.10 opt/opt Y C We use only 16-byte operations, except for unaligned top-most and bottom-most C limbs. We use the SSSE3 palignr instruction when rp - up = 8 (mod 16). That C instruction is better adapted to mpn_copyd's needs, we need to contort the C code to use it here. C C For operands of < COM_SSE_THRESHOLD limbs, we use a plain 64-bit loop, taken C from the x86_64 default code. C INPUT PARAMETERS define(`rp', `%rdi') define(`up', `%rsi') define(`n', `%rdx') C There are three instructions for loading an aligned 128-bit quantity. We use C movaps, since it has the shortest coding. define(`movdqa', ``movaps'') ifdef(`COM_SSE_THRESHOLD',`',`define(`COM_SSE_THRESHOLD', 7)') ASM_START() TEXT ALIGN(64) PROLOGUE(mpn_com) FUNC_ENTRY(3) cmp $COM_SSE_THRESHOLD, n jbe L(bc) pcmpeqb %xmm7, %xmm7 C set to 111...111 test $8, R8(rp) C is rp 16-byte aligned? jz L(rp_aligned) C jump if rp aligned mov (up), %r8 lea 8(up), up not %r8 mov %r8, (rp) lea 8(rp), rp dec n L(rp_aligned): test $8, R8(up) jnz L(uent) ifelse(eval(COM_SSE_THRESHOLD >= 8),1, ` sub $8, n', ` jmp L(am)') ALIGN(16) L(atop):movdqa 0(up), %xmm0 movdqa 16(up), %xmm1 movdqa 32(up), %xmm2 movdqa 48(up), %xmm3 lea 64(up), up pxor %xmm7, %xmm0 pxor %xmm7, %xmm1 pxor %xmm7, %xmm2 pxor %xmm7, %xmm3 movdqa %xmm0, (rp) movdqa %xmm1, 16(rp) movdqa %xmm2, 32(rp) movdqa %xmm3, 48(rp) lea 64(rp), rp L(am): sub $8, n jnc L(atop) test $4, R8(n) jz 1f movdqa (up), %xmm0 movdqa 16(up), %xmm1 lea 32(up), up pxor %xmm7, %xmm0 pxor %xmm7, %xmm1 movdqa %xmm0, (rp) movdqa %xmm1, 16(rp) lea 32(rp), rp 1: test $2, R8(n) jz 1f movdqa (up), %xmm0 lea 16(up), up pxor %xmm7, %xmm0 movdqa %xmm0, (rp) lea 16(rp), rp 1: test $1, R8(n) jz 1f mov (up), %r8 not %r8 mov %r8, (rp) 1: FUNC_EXIT() ret L(uent): C Code handling up - rp = 8 (mod 16) C FIXME: The code below only handles overlap if it is close to complete, or C quite separate: up-rp < 5 or up-up > 15 limbs lea -40(up), %rax C 40 = 5 * GMP_LIMB_BYTES sub rp, %rax cmp $80, %rax C 80 = (15-5) * GMP_LIMB_BYTES jbe L(bc) C deflect to plain loop sub $16, n jc L(uend) movdqa 120(up), %xmm3 sub $16, n jmp L(um) ALIGN(16) L(utop):movdqa 120(up), %xmm3 pxor %xmm7, %xmm0 movdqa %xmm0, -128(rp) sub $16, n L(um): movdqa 104(up), %xmm2 palignr($8, %xmm2, %xmm3) movdqa 88(up), %xmm1 pxor %xmm7, %xmm3 movdqa %xmm3, 112(rp) palignr($8, %xmm1, %xmm2) movdqa 72(up), %xmm0 pxor %xmm7, %xmm2 movdqa %xmm2, 96(rp) palignr($8, %xmm0, %xmm1) movdqa 56(up), %xmm3 pxor %xmm7, %xmm1 movdqa %xmm1, 80(rp) palignr($8, %xmm3, %xmm0) movdqa 40(up), %xmm2 pxor %xmm7, %xmm0 movdqa %xmm0, 64(rp) palignr($8, %xmm2, %xmm3) movdqa 24(up), %xmm1 pxor %xmm7, %xmm3 movdqa %xmm3, 48(rp) palignr($8, %xmm1, %xmm2) movdqa 8(up), %xmm0 pxor %xmm7, %xmm2 movdqa %xmm2, 32(rp) palignr($8, %xmm0, %xmm1) movdqa -8(up), %xmm3 pxor %xmm7, %xmm1 movdqa %xmm1, 16(rp) palignr($8, %xmm3, %xmm0) lea 128(up), up lea 128(rp), rp jnc L(utop) pxor %xmm7, %xmm0 movdqa %xmm0, -128(rp) L(uend):test $8, R8(n) jz 1f movdqa 56(up), %xmm3 movdqa 40(up), %xmm2 palignr($8, %xmm2, %xmm3) movdqa 24(up), %xmm1 pxor %xmm7, %xmm3 movdqa %xmm3, 48(rp) palignr($8, %xmm1, %xmm2) movdqa 8(up), %xmm0 pxor %xmm7, %xmm2 movdqa %xmm2, 32(rp) palignr($8, %xmm0, %xmm1) movdqa -8(up), %xmm3 pxor %xmm7, %xmm1 movdqa %xmm1, 16(rp) palignr($8, %xmm3, %xmm0) lea 64(up), up pxor %xmm7, %xmm0 movdqa %xmm0, (rp) lea 64(rp), rp 1: test $4, R8(n) jz 1f movdqa 24(up), %xmm1 movdqa 8(up), %xmm0 palignr($8, %xmm0, %xmm1) movdqa -8(up), %xmm3 pxor %xmm7, %xmm1 movdqa %xmm1, 16(rp) palignr($8, %xmm3, %xmm0) lea 32(up), up pxor %xmm7, %xmm0 movdqa %xmm0, (rp) lea 32(rp), rp 1: test $2, R8(n) jz 1f movdqa 8(up), %xmm0 movdqa -8(up), %xmm3 palignr($8, %xmm3, %xmm0) lea 16(up), up pxor %xmm7, %xmm0 movdqa %xmm0, (rp) lea 16(rp), rp 1: test $1, R8(n) jz 1f mov (up), %r8 not %r8 mov %r8, (rp) 1: FUNC_EXIT() ret C Basecase code. Needed for good small operands speed, not for C correctness as the above code is currently written. L(bc): lea -8(rp), rp sub $4, R32(n) jc L(end) ifelse(eval(1 || COM_SSE_THRESHOLD >= 8),1, ` ALIGN(16)') L(top): mov (up), %r8 mov 8(up), %r9 lea 32(rp), rp mov 16(up), %r10 mov 24(up), %r11 lea 32(up), up not %r8 not %r9 not %r10 not %r11 mov %r8, -24(rp) mov %r9, -16(rp) ifelse(eval(1 || COM_SSE_THRESHOLD >= 8),1, ` sub $4, R32(n)') mov %r10, -8(rp) mov %r11, (rp) ifelse(eval(1 || COM_SSE_THRESHOLD >= 8),1, ` jnc L(top)') L(end): test $1, R8(n) jz 1f mov (up), %r8 not %r8 mov %r8, 8(rp) lea 8(rp), rp lea 8(up), up 1: test $2, R8(n) jz 1f mov (up), %r8 mov 8(up), %r9 not %r8 not %r9 mov %r8, 8(rp) mov %r9, 16(rp) 1: FUNC_EXIT() ret EPILOGUE() CF_PROT