dnl AMD64 mpn_mul_basecase. dnl Contributed to the GNU project by Torbjorn Granlund and David Harvey. dnl Copyright 2008, 2012 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C cycles/limb C AMD K8,K9 2.375 C AMD K10 2.375 C Intel P4 15-16 C Intel core2 4.45 C Intel corei 4.35 C Intel atom ? C VIA nano 4.5 C The inner loops of this code are the result of running a code generation and C optimization tool suite written by David Harvey and Torbjorn Granlund. C TODO C * Use fewer registers. (how??? I can't see it -- david) C * Avoid some "mov $0,r" and instead use "xor r,r". C * Can the top of each L(addmul_outer_n) prologue be folded into the C mul_1/mul_2 prologues, saving a LEA (%rip)? It would slow down the C case where vn = 1 or 2; is it worth it? C INPUT PARAMETERS define(`rp', `%rdi') define(`up', `%rsi') define(`un_param',`%rdx') define(`vp', `%rcx') define(`vn', `%r8') define(`v0', `%r12') define(`v1', `%r9') define(`w0', `%rbx') define(`w1', `%r15') define(`w2', `%rbp') define(`w3', `%r10') define(`n', `%r11') define(`outer_addr', `%r14') define(`un', `%r13') ABI_SUPPORT(DOS64) ABI_SUPPORT(STD64) ASM_START() TEXT ALIGN(16) PROLOGUE(mpn_mul_basecase) FUNC_ENTRY(4) IFDOS(` mov 56(%rsp), %r8d ') push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 xor R32(un), R32(un) mov (up), %rax mov (vp), v0 sub un_param, un C rdx used by mul mov un, n mov R32(un_param), R32(w0) lea (rp,un_param,8), rp lea (up,un_param,8), up mul v0 test $1, R8(vn) jz L(mul_2) C =========================================================== C mul_1 for vp[0] if vn is odd L(mul_1): and $3, R32(w0) jz L(mul_1_prologue_0) cmp $2, R32(w0) jc L(mul_1_prologue_1) jz L(mul_1_prologue_2) L(mul_1_prologue_3): add $-1, n lea L(addmul_outer_3)(%rip), outer_addr mov %rax, w3 mov %rdx, w0 jmp L(mul_1_entry_3) L(mul_1_prologue_0): mov %rax, w2 mov %rdx, w3 C note: already w0 == 0 lea L(addmul_outer_0)(%rip), outer_addr jmp L(mul_1_entry_0) L(mul_1_prologue_1): cmp $-1, un jne 2f mov %rax, -8(rp) mov %rdx, (rp) jmp L(ret) 2: add $1, n lea L(addmul_outer_1)(%rip), outer_addr mov %rax, w1 mov %rdx, w2 xor R32(w3), R32(w3) mov (up,n,8), %rax jmp L(mul_1_entry_1) L(mul_1_prologue_2): add $-2, n lea L(addmul_outer_2)(%rip), outer_addr mov %rax, w0 mov %rdx, w1 mov 24(up,n,8), %rax xor R32(w2), R32(w2) xor R32(w3), R32(w3) jmp L(mul_1_entry_2) C this loop is 10 c/loop = 2.5 c/l on K8, for all up/rp alignments ALIGN(16) L(mul_1_top): mov w0, -16(rp,n,8) add %rax, w1 mov (up,n,8), %rax adc %rdx, w2 L(mul_1_entry_1): xor R32(w0), R32(w0) mul v0 mov w1, -8(rp,n,8) add %rax, w2 adc %rdx, w3 L(mul_1_entry_0): mov 8(up,n,8), %rax mul v0 mov w2, (rp,n,8) add %rax, w3 adc %rdx, w0 L(mul_1_entry_3): mov 16(up,n,8), %rax mul v0 mov w3, 8(rp,n,8) xor R32(w2), R32(w2) C zero mov w2, w3 C zero add %rax, w0 mov 24(up,n,8), %rax mov w2, w1 C zero adc %rdx, w1 L(mul_1_entry_2): mul v0 add $4, n js L(mul_1_top) mov w0, -16(rp) add %rax, w1 mov w1, -8(rp) adc %rdx, w2 mov w2, (rp) add $-1, vn C vn -= 1 jz L(ret) mov 8(vp), v0 mov 16(vp), v1 lea 8(vp), vp C vp += 1 lea 8(rp), rp C rp += 1 jmp *outer_addr C =========================================================== C mul_2 for vp[0], vp[1] if vn is even ALIGN(16) L(mul_2): mov 8(vp), v1 and $3, R32(w0) jz L(mul_2_prologue_0) cmp $2, R32(w0) jz L(mul_2_prologue_2) jc L(mul_2_prologue_1) L(mul_2_prologue_3): lea L(addmul_outer_3)(%rip), outer_addr add $2, n mov %rax, -16(rp,n,8) mov %rdx, w2 xor R32(w3), R32(w3) xor R32(w0), R32(w0) mov -16(up,n,8), %rax jmp L(mul_2_entry_3) ALIGN(16) L(mul_2_prologue_0): add $3, n mov %rax, w0 mov %rdx, w1 xor R32(w2), R32(w2) mov -24(up,n,8), %rax lea L(addmul_outer_0)(%rip), outer_addr jmp L(mul_2_entry_0) ALIGN(16) L(mul_2_prologue_1): mov %rax, w3 mov %rdx, w0 xor R32(w1), R32(w1) lea L(addmul_outer_1)(%rip), outer_addr jmp L(mul_2_entry_1) ALIGN(16) L(mul_2_prologue_2): add $1, n lea L(addmul_outer_2)(%rip), outer_addr mov $0, R32(w0) mov $0, R32(w1) mov %rax, w2 mov -8(up,n,8), %rax mov %rdx, w3 jmp L(mul_2_entry_2) C this loop is 18 c/loop = 2.25 c/l on K8, for all up/rp alignments ALIGN(16) L(mul_2_top): mov -32(up,n,8), %rax mul v1 add %rax, w0 adc %rdx, w1 mov -24(up,n,8), %rax xor R32(w2), R32(w2) mul v0 add %rax, w0 mov -24(up,n,8), %rax adc %rdx, w1 adc $0, R32(w2) L(mul_2_entry_0): mul v1 add %rax, w1 mov w0, -24(rp,n,8) adc %rdx, w2 mov -16(up,n,8), %rax mul v0 mov $0, R32(w3) add %rax, w1 adc %rdx, w2 mov -16(up,n,8), %rax adc $0, R32(w3) mov $0, R32(w0) mov w1, -16(rp,n,8) L(mul_2_entry_3): mul v1 add %rax, w2 mov -8(up,n,8), %rax adc %rdx, w3 mov $0, R32(w1) mul v0 add %rax, w2 mov -8(up,n,8), %rax adc %rdx, w3 adc R32(w1), R32(w0) C adc $0, w0 L(mul_2_entry_2): mul v1 add %rax, w3 mov w2, -8(rp,n,8) adc %rdx, w0 mov (up,n,8), %rax mul v0 add %rax, w3 adc %rdx, w0 adc $0, R32(w1) L(mul_2_entry_1): add $4, n mov w3, -32(rp,n,8) js L(mul_2_top) mov -32(up,n,8), %rax C FIXME: n is constant mul v1 add %rax, w0 mov w0, (rp) adc %rdx, w1 mov w1, 8(rp) add $-2, vn C vn -= 2 jz L(ret) mov 16(vp), v0 mov 24(vp), v1 lea 16(vp), vp C vp += 2 lea 16(rp), rp C rp += 2 jmp *outer_addr C =========================================================== C addmul_2 for remaining vp's C in the following prologues, we reuse un to store the C adjusted value of n that is reloaded on each iteration L(addmul_outer_0): add $3, un lea 0(%rip), outer_addr mov un, n mov -24(up,un,8), %rax mul v0 mov %rax, w0 mov -24(up,un,8), %rax mov %rdx, w1 xor R32(w2), R32(w2) jmp L(addmul_entry_0) L(addmul_outer_1): mov un, n mov (up,un,8), %rax mul v0 mov %rax, w3 mov (up,un,8), %rax mov %rdx, w0 xor R32(w1), R32(w1) jmp L(addmul_entry_1) L(addmul_outer_2): add $1, un lea 0(%rip), outer_addr mov un, n mov -8(up,un,8), %rax mul v0 xor R32(w0), R32(w0) mov %rax, w2 xor R32(w1), R32(w1) mov %rdx, w3 mov -8(up,un,8), %rax jmp L(addmul_entry_2) L(addmul_outer_3): add $2, un lea 0(%rip), outer_addr mov un, n mov -16(up,un,8), %rax xor R32(w3), R32(w3) mul v0 mov %rax, w1 mov -16(up,un,8), %rax mov %rdx, w2 jmp L(addmul_entry_3) C this loop is 19 c/loop = 2.375 c/l on K8, for all up/rp alignments ALIGN(16) L(addmul_top): add w3, -32(rp,n,8) adc %rax, w0 mov -24(up,n,8), %rax adc %rdx, w1 xor R32(w2), R32(w2) mul v0 add %rax, w0 mov -24(up,n,8), %rax adc %rdx, w1 adc R32(w2), R32(w2) C adc $0, w2 L(addmul_entry_0): mul v1 xor R32(w3), R32(w3) add w0, -24(rp,n,8) adc %rax, w1 mov -16(up,n,8), %rax adc %rdx, w2 mul v0 add %rax, w1 mov -16(up,n,8), %rax adc %rdx, w2 adc $0, R32(w3) L(addmul_entry_3): mul v1 add w1, -16(rp,n,8) adc %rax, w2 mov -8(up,n,8), %rax adc %rdx, w3 mul v0 xor R32(w0), R32(w0) add %rax, w2 adc %rdx, w3 mov $0, R32(w1) mov -8(up,n,8), %rax adc R32(w1), R32(w0) C adc $0, w0 L(addmul_entry_2): mul v1 add w2, -8(rp,n,8) adc %rax, w3 adc %rdx, w0 mov (up,n,8), %rax mul v0 add %rax, w3 mov (up,n,8), %rax adc %rdx, w0 adc $0, R32(w1) L(addmul_entry_1): mul v1 add $4, n js L(addmul_top) add w3, -8(rp) adc %rax, w0 mov w0, (rp) adc %rdx, w1 mov w1, 8(rp) add $-2, vn C vn -= 2 jz L(ret) lea 16(rp), rp C rp += 2 lea 16(vp), vp C vp += 2 mov (vp), v0 mov 8(vp), v1 jmp *outer_addr ALIGN(16) L(ret): pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx FUNC_EXIT() ret EPILOGUE()