dnl AMD64 mpn_sqr_basecase optimised for Intel Haswell. dnl Contributed to the GNU project by Torbjörn Granlund. dnl Copyright 2008, 2009, 2011-2013 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C cycles/limb mul_2 addmul_2 sqr_diag_addlsh1 C AMD K8,K9 n/a n/a n/a C AMD K10 n/a n/a n/a C AMD bull n/a n/a n/a C AMD pile n/a n/a n/a C AMD steam ? ? ? C AMD bobcat n/a n/a n/a C AMD jaguar ? ? ? C Intel P4 n/a n/a n/a C Intel core n/a n/a n/a C Intel NHM n/a n/a n/a C Intel SBR n/a n/a n/a C Intel IBR n/a n/a n/a C Intel HWL 1.86 2.15 ~2.5 C Intel BWL ? ? ? C Intel atom n/a n/a n/a C VIA nano n/a n/a n/a C The inner loops of this code are the result of running a code generation and C optimisation tool suite written by David Harvey and Torbjörn Granlund, except C that the sqr_diag_addlsh1 loop was manually written. C TODO C * Replace current unoptimised sqr_diag_addlsh1 loop; 1.75 c/l might be C possible. C * Consider splitting outer loop into 2, one for n = 1 (mod 2) and one for C n = 0 (mod 2). These loops could fall into specific "corner" code. C * Consider splitting outer loop into 4. C * Streamline pointer updates. C * Perhaps suppress a few more xor insns in feed-in code. C * Make sure we write no dead registers in feed-in code. C * We might use 32-bit size ops, since n >= 2^32 is non-terminating. Watch C out for negative sizes being zero-extended, though. C * Provide straight-line code for n = 4; then look for simplifications in C main code. define(`rp', `%rdi') define(`up', `%rsi') define(`un_param',`%rdx') ABI_SUPPORT(DOS64) ABI_SUPPORT(STD64) ASM_START() TEXT ALIGN(32) PROLOGUE(mpn_sqr_basecase) FUNC_ENTRY(3) cmp $2, un_param jae L(gt1) mov (up), %rdx mulx( %rdx, %rax, %rdx) mov %rax, (rp) mov %rdx, 8(rp) FUNC_EXIT() ret L(gt1): jne L(gt2) mov (up), %rdx mov 8(up), %rcx mulx( %rcx, %r9, %r10) C v0 * v1 W 1 2 mulx( %rdx, %rax, %r8) C v0 * v0 W 0 1 mov %rcx, %rdx mulx( %rdx, %r11, %rdx) C v1 * v1 W 2 3 add %r9, %r9 C W 1 adc %r10, %r10 C W 2 adc $0, %rdx C W 3 add %r9, %r8 C W 1 adc %r11, %r10 C W 2 adc $0, %rdx C W 3 mov %rax, (rp) mov %r8, 8(rp) mov %r10, 16(rp) mov %rdx, 24(rp) FUNC_EXIT() ret L(gt2): cmp $4, un_param jae L(gt3) define(`v0', `%r8') define(`v1', `%r9') define(`w0', `%r10') define(`w2', `%r11') mov (up), v0 mov 8(up), %rdx mov %rdx, v1 mulx( v0, w2, %rax) mov 16(up), %rdx mulx( v0, w0, %rcx) mov w2, %r8 add %rax, w0 adc $0, %rcx mulx( v1, %rdx, %rax) add %rcx, %rdx mov %rdx, 24(rp) adc $0, %rax mov %rax, 32(rp) xor R32(%rcx), R32(%rcx) mov (up), %rdx mulx( %rdx, %rax, w2) mov %rax, (rp) add %r8, %r8 adc w0, w0 setc R8(%rcx) mov 8(up), %rdx mulx( %rdx, %rax, %rdx) add w2, %r8 adc %rax, w0 mov %r8, 8(rp) mov w0, 16(rp) mov 24(rp), %r8 mov 32(rp), w0 lea (%rdx,%rcx), w2 adc %r8, %r8 adc w0, w0 setc R8(%rcx) mov 16(up), %rdx mulx( %rdx, %rax, %rdx) add w2, %r8 adc %rax, w0 mov %r8, 24(rp) mov w0, 32(rp) adc %rcx, %rdx mov %rdx, 40(rp) FUNC_EXIT() ret L(gt3): define(`v0', `%r8') define(`v1', `%r9') define(`w0', `%r10') define(`w1', `%r11') define(`w2', `%rbx') define(`w3', `%rbp') define(`un', `%r12') define(`n', `%rcx') define(`X0', `%r13') define(`X1', `%r14') L(do_mul_2): push %rbx push %rbp push %r12 push %r13 push %r14 mov $0, R32(un) sub un_param, un C free up rdx push un mov (up), v0 mov 8(up), %rdx lea 2(un), n sar $2, n C FIXME: suppress, change loop? inc un C decrement |un| mov %rdx, v1 test $1, R8(un) jnz L(mx1) L(mx0): mulx( v0, w2, w1) mov 16(up), %rdx mov w2, 8(rp) xor w2, w2 mulx( v0, w0, w3) test $2, R8(un) jz L(m00) L(m10): lea -8(rp), rp lea -8(up), up jmp L(mlo2) L(m00): lea 8(up), up lea 8(rp), rp jmp L(mlo0) L(mx1): mulx( v0, w0, w3) mov 16(up), %rdx mov w0, 8(rp) xor w0, w0 mulx( v0, w2, w1) test $2, R8(un) jz L(mlo3) L(m01): lea 16(rp), rp lea 16(up), up jmp L(mlo1) ALIGN(32) L(mtop):mulx( v1, %rax, w0) add %rax, w2 C 0 mov (up), %rdx mulx( v0, %rax, w1) adc $0, w0 C 1 add %rax, w2 C 0 L(mlo1):adc $0, w1 C 1 add w3, w2 C 0 mov w2, (rp) C 0 adc $0, w1 C 1 mulx( v1, %rax, w2) add %rax, w0 C 1 mov 8(up), %rdx adc $0, w2 C 2 mulx( v0, %rax, w3) add %rax, w0 C 1 adc $0, w3 C 2 L(mlo0):add w1, w0 C 1 mov w0, 8(rp) C 1 adc $0, w3 C 2 mulx( v1, %rax, w0) add %rax, w2 C 2 mov 16(up), %rdx mulx( v0, %rax, w1) adc $0, w0 C 3 add %rax, w2 C 2 adc $0, w1 C 3 L(mlo3):add w3, w2 C 2 mov w2, 16(rp) C 2 adc $0, w1 C 3 mulx( v1, %rax, w2) add %rax, w0 C 3 mov 24(up), %rdx adc $0, w2 C 4 mulx( v0, %rax, w3) add %rax, w0 C 3 adc $0, w3 C 4 L(mlo2):add w1, w0 C 3 lea 32(up), up mov w0, 24(rp) C 3 adc $0, w3 C 4 inc n lea 32(rp), rp jnz L(mtop) L(mend):mulx( v1, %rdx, %rax) add %rdx, w2 adc $0, %rax add w3, w2 mov w2, (rp) adc $0, %rax mov %rax, 8(rp) lea 16(up), up lea -16(rp), rp L(do_addmul_2): L(outer): lea (up,un,8), up C put back up to 2 positions above last time lea 48(rp,un,8), rp C put back rp to 4 positions above last time mov -8(up), v0 C shared between addmul_2 and corner add $2, un C decrease |un| cmp $-2, un jge L(corner) mov (up), v1 lea 1(un), n sar $2, n C FIXME: suppress, change loop? mov v1, %rdx test $1, R8(un) jnz L(bx1) L(bx0): mov (rp), X0 mov 8(rp), X1 mulx( v0, %rax, w1) add %rax, X0 adc $0, w1 mov X0, (rp) xor w2, w2 test $2, R8(un) jnz L(b10) L(b00): mov 8(up), %rdx lea 16(rp), rp lea 16(up), up jmp L(lo0) L(b10): mov 8(up), %rdx mov 16(rp), X0 lea 32(up), up inc n mulx( v0, %rax, w3) jz L(ex) jmp L(lo2) L(bx1): mov (rp), X1 mov 8(rp), X0 mulx( v0, %rax, w3) mov 8(up), %rdx add %rax, X1 adc $0, w3 xor w0, w0 mov X1, (rp) mulx( v0, %rax, w1) test $2, R8(un) jz L(b11) L(b01): mov 16(rp), X1 lea 24(rp), rp lea 24(up), up jmp L(lo1) L(b11): lea 8(rp), rp lea 8(up), up jmp L(lo3) ALIGN(32) L(top): mulx( v0, %rax, w3) add w0, X1 adc $0, w2 L(lo2): add %rax, X1 adc $0, w3 mulx( v1, %rax, w0) add %rax, X0 adc $0, w0 lea 32(rp), rp add w1, X1 mov -16(up), %rdx mov X1, -24(rp) adc $0, w3 add w2, X0 mov -8(rp), X1 mulx( v0, %rax, w1) adc $0, w0 L(lo1): add %rax, X0 mulx( v1, %rax, w2) adc $0, w1 add w3, X0 mov X0, -16(rp) adc $0, w1 add %rax, X1 adc $0, w2 add w0, X1 mov -8(up), %rdx adc $0, w2 L(lo0): mulx( v0, %rax, w3) add %rax, X1 adc $0, w3 mov (rp), X0 mulx( v1, %rax, w0) add %rax, X0 adc $0, w0 add w1, X1 mov X1, -8(rp) adc $0, w3 mov (up), %rdx add w2, X0 mulx( v0, %rax, w1) adc $0, w0 L(lo3): add %rax, X0 adc $0, w1 mulx( v1, %rax, w2) add w3, X0 mov 8(rp), X1 mov X0, (rp) mov 16(rp), X0 adc $0, w1 add %rax, X1 adc $0, w2 mov 8(up), %rdx lea 32(up), up inc n jnz L(top) L(end): mulx( v0, %rax, w3) add w0, X1 adc $0, w2 L(ex): add %rax, X1 adc $0, w3 mulx( v1, %rdx, %rax) add w1, X1 mov X1, 8(rp) adc $0, w3 add w2, %rdx adc $0, %rax add %rdx, w3 mov w3, 16(rp) adc $0, %rax mov %rax, 24(rp) jmp L(outer) C loop until a small corner remains L(corner): pop un mov (up), %rdx jg L(small_corner) mov %rdx, v1 mov (rp), X0 mov %rax, X1 C Tricky rax reuse of last iteration mulx( v0, %rax, w1) add %rax, X0 adc $0, w1 mov X0, (rp) mov 8(up), %rdx mulx( v0, %rax, w3) add %rax, X1 adc $0, w3 mulx( v1, %rdx, %rax) add w1, X1 mov X1, 8(rp) adc $0, w3 add w3, %rdx mov %rdx, 16(rp) adc $0, %rax mov %rax, 24(rp) lea 32(rp), rp lea 16(up), up jmp L(com) L(small_corner): mulx( v0, X1, w3) add %rax, X1 C Tricky rax reuse of last iteration adc $0, w3 mov X1, (rp) mov w3, 8(rp) lea 16(rp), rp lea 8(up), up L(com): L(sqr_diag_addlsh1): lea 8(up,un,8), up C put back up at its very beginning lea (rp,un,8), rp lea (rp,un,8), rp C put back rp at its very beginning inc un mov -8(up), %rdx xor R32(%rbx), R32(%rbx) C clear CF as side effect mulx( %rdx, %rax, %r10) mov %rax, 8(rp) mov 16(rp), %r8 mov 24(rp), %r9 jmp L(dm) ALIGN(16) L(dtop):mov 32(rp), %r8 mov 40(rp), %r9 lea 16(rp), rp lea (%rdx,%rbx), %r10 L(dm): adc %r8, %r8 adc %r9, %r9 setc R8(%rbx) mov (up), %rdx lea 8(up), up mulx( %rdx, %rax, %rdx) add %r10, %r8 adc %rax, %r9 mov %r8, 16(rp) mov %r9, 24(rp) inc un jnz L(dtop) L(dend):adc %rbx, %rdx mov %rdx, 32(rp) pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx FUNC_EXIT() ret EPILOGUE()