/* mpn_toom_eval_pm2exp -- Evaluate a polynomial in +2^k and -2^k Contributed to the GNU project by Niels Möller THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. Copyright 2009 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */ #include "gmp.h" #include "gmp-impl.h" /* Evaluates a polynomial of degree k > 2, in the points +2^shift and -2^shift. */ int mpn_toom_eval_pm2exp (mp_ptr xp2, mp_ptr xm2, unsigned k, mp_srcptr xp, mp_size_t n, mp_size_t hn, unsigned shift, mp_ptr tp) { unsigned i; int neg; #if HAVE_NATIVE_mpn_addlsh_n mp_limb_t cy; #endif ASSERT (k >= 3); ASSERT (shift*k < GMP_NUMB_BITS); ASSERT (hn > 0); ASSERT (hn <= n); /* The degree k is also the number of full-size coefficients, so * that last coefficient, of size hn, starts at xp + k*n. */ #if HAVE_NATIVE_mpn_addlsh_n xp2[n] = mpn_addlsh_n (xp2, xp, xp + 2*n, n, 2*shift); for (i = 4; i < k; i += 2) xp2[n] += mpn_addlsh_n (xp2, xp2, xp + i*n, n, i*shift); tp[n] = mpn_lshift (tp, xp+n, n, shift); for (i = 3; i < k; i+= 2) tp[n] += mpn_addlsh_n (tp, tp, xp+i*n, n, i*shift); if (k & 1) { cy = mpn_addlsh_n (tp, tp, xp+k*n, hn, k*shift); MPN_INCR_U (tp + hn, n+1 - hn, cy); } else { cy = mpn_addlsh_n (xp2, xp2, xp+k*n, hn, k*shift); MPN_INCR_U (xp2 + hn, n+1 - hn, cy); } #else /* !HAVE_NATIVE_mpn_addlsh_n */ xp2[n] = mpn_lshift (tp, xp+2*n, n, 2*shift); xp2[n] += mpn_add_n (xp2, xp, tp, n); for (i = 4; i < k; i += 2) { xp2[n] += mpn_lshift (tp, xp + i*n, n, i*shift); xp2[n] += mpn_add_n (xp2, xp2, tp, n); } tp[n] = mpn_lshift (tp, xp+n, n, shift); for (i = 3; i < k; i+= 2) { tp[n] += mpn_lshift (xm2, xp + i*n, n, i*shift); tp[n] += mpn_add_n (tp, tp, xm2, n); } xm2[hn] = mpn_lshift (xm2, xp + k*n, hn, k*shift); if (k & 1) mpn_add (tp, tp, n+1, xm2, hn+1); else mpn_add (xp2, xp2, n+1, xm2, hn+1); #endif /* !HAVE_NATIVE_mpn_addlsh_n */ neg = (mpn_cmp (xp2, tp, n + 1) < 0) ? ~0 : 0; #if HAVE_NATIVE_mpn_add_n_sub_n if (neg) mpn_add_n_sub_n (xp2, xm2, tp, xp2, n + 1); else mpn_add_n_sub_n (xp2, xm2, xp2, tp, n + 1); #else /* !HAVE_NATIVE_mpn_add_n_sub_n */ if (neg) mpn_sub_n (xm2, tp, xp2, n + 1); else mpn_sub_n (xm2, xp2, tp, n + 1); mpn_add_n (xp2, xp2, tp, n + 1); #endif /* !HAVE_NATIVE_mpn_add_n_sub_n */ /* FIXME: the following asserts are useless if (k+1)*shift >= GMP_LIMB_BITS */ ASSERT ((k+1)*shift >= GMP_LIMB_BITS || xp2[n] < ((CNST_LIMB(1)<<((k+1)*shift))-1)/((CNST_LIMB(1)<= GMP_LIMB_BITS || xm2[n] < ((CNST_LIMB(1)<<((k+2)*shift))-((k&1)?(CNST_LIMB(1)<