/* Used by sinf, cosf and sincosf functions. Copyright (C) 2017-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* Chebyshev constants for cos, range -PI/4 - PI/4. */ static const double C0 = -0x1.ffffffffe98aep-2; static const double C1 = 0x1.55555545c50c7p-5; static const double C2 = -0x1.6c16b348b6874p-10; static const double C3 = 0x1.a00eb9ac43ccp-16; static const double C4 = -0x1.23c97dd8844d7p-22; /* Chebyshev constants for sin, range -PI/4 - PI/4. */ static const double S0 = -0x1.5555555551cd9p-3; static const double S1 = 0x1.1111110c2688bp-7; static const double S2 = -0x1.a019f8b4bd1f9p-13; static const double S3 = 0x1.71d7264e6b5b4p-19; static const double S4 = -0x1.a947e1674b58ap-26; /* Chebyshev constants for sin, range 2^-27 - 2^-5. */ static const double SS0 = -0x1.555555543d49dp-3; static const double SS1 = 0x1.110f475cec8c5p-7; /* Chebyshev constants for cos, range 2^-27 - 2^-5. */ static const double CC0 = -0x1.fffffff5cc6fdp-2; static const double CC1 = 0x1.55514b178dac5p-5; /* PI/2 with 98 bits of accuracy. */ static const double PI_2_hi = 0x1.921fb544p+0; static const double PI_2_lo = 0x1.0b4611a626332p-34; static const double SMALL = 0x1p-50; /* 2^-50. */ static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */ #define FLOAT_EXPONENT_SHIFT 23 #define FLOAT_EXPONENT_BIAS 127 static const double pio2_table[] = { 0 * M_PI_2, 1 * M_PI_2, 2 * M_PI_2, 3 * M_PI_2, 4 * M_PI_2, 5 * M_PI_2 }; static const double invpio4_table[] = { 0x0p+0, 0x1.45f306cp+0, 0x1.c9c882ap-28, 0x1.4fe13a8p-58, 0x1.f47d4dp-85, 0x1.bb81b6cp-112, 0x1.4acc9ep-142, 0x1.0e4107cp-169 }; static const double ones[] = { 1.0, -1.0 }; /* Compute the sine value using Chebyshev polynomials where THETA is the range reduced absolute value of the input and it is less than Pi/4, N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide whether a sine or cosine approximation is more accurate and SIGNBIT is used to add the correct sign after the Chebyshev polynomial is computed. */ static inline float reduced_sin (const double theta, const unsigned int n, const unsigned int signbit) { double sx; const double theta2 = theta * theta; /* We are operating on |x|, so we need to add back the original signbit for sinf. */ double sign; /* Determine positive or negative primary interval. */ sign = ones[((n >> 2) & 1) ^ signbit]; /* Are we in the primary interval of sin or cos? */ if ((n & 2) == 0) { /* Here sinf() is calculated using sin Chebyshev polynomial: x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */ sx = S3 + theta2 * S4; /* S3+x^2*S4. */ sx = S2 + theta2 * sx; /* S2+x^2*(S3+x^2*S4). */ sx = S1 + theta2 * sx; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */ sx = S0 + theta2 * sx; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */ sx = theta + theta * theta2 * sx; } else { /* Here sinf() is calculated using cos Chebyshev polynomial: 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */ sx = C3 + theta2 * C4; /* C3+x^2*C4. */ sx = C2 + theta2 * sx; /* C2+x^2*(C3+x^2*C4). */ sx = C1 + theta2 * sx; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */ sx = C0 + theta2 * sx; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */ sx = 1.0 + theta2 * sx; } /* Add in the signbit and assign the result. */ return sign * sx; } /* Compute the cosine value using Chebyshev polynomials where THETA is the range reduced absolute value of the input and it is less than Pi/4, N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide whether a sine or cosine approximation is more accurate and the sign of the result. */ static inline float reduced_cos (double theta, unsigned int n) { double sign, cx; const double theta2 = theta * theta; /* Determine positive or negative primary interval. */ n += 2; sign = ones[(n >> 2) & 1]; /* Are we in the primary interval of sin or cos? */ if ((n & 2) == 0) { /* Here cosf() is calculated using sin Chebyshev polynomial: x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */ cx = S3 + theta2 * S4; cx = S2 + theta2 * cx; cx = S1 + theta2 * cx; cx = S0 + theta2 * cx; cx = theta + theta * theta2 * cx; } else { /* Here cosf() is calculated using cos Chebyshev polynomial: 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */ cx = C3 + theta2 * C4; cx = C2 + theta2 * cx; cx = C1 + theta2 * cx; cx = C0 + theta2 * cx; cx = 1. + theta2 * cx; } return sign * cx; }