/** * WinPR: Windows Portable Runtime * System Information * * Copyright 2012 Marc-Andre Moreau * Copyright 2013 Bernhard Miklautz * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #if defined(ANDROID) #include "cpufeatures/cpu-features.h" #endif #if defined(__linux__) #include #include #include #endif #include "../log.h" #define TAG WINPR_TAG("sysinfo") /** * api-ms-win-core-sysinfo-l1-1-1.dll: * * EnumSystemFirmwareTables * GetSystemFirmwareTable * GetLogicalProcessorInformation * GetLogicalProcessorInformationEx * GetProductInfo * GetSystemDirectoryA * GetSystemDirectoryW * GetSystemTimeAdjustment * GetSystemWindowsDirectoryA * GetSystemWindowsDirectoryW * GetWindowsDirectoryA * GetWindowsDirectoryW * GlobalMemoryStatusEx * SetComputerNameExW * VerSetConditionMask */ #ifndef _WIN32 #include #include #ifdef HAVE_UNISTD_H #include #endif #include #include #if defined(__MACOSX__) || defined(__IOS__) || defined(__FreeBSD__) || defined(__NetBSD__) || \ defined(__OpenBSD__) || defined(__DragonFly__) #include #endif static DWORD GetProcessorArchitecture(void) { DWORD cpuArch = PROCESSOR_ARCHITECTURE_UNKNOWN; #if defined(ANDROID) AndroidCpuFamily family = android_getCpuFamily(); switch (family) { case ANDROID_CPU_FAMILY_ARM: return PROCESSOR_ARCHITECTURE_ARM; case ANDROID_CPU_FAMILY_X86: return PROCESSOR_ARCHITECTURE_INTEL; case ANDROID_CPU_FAMILY_MIPS: return PROCESSOR_ARCHITECTURE_MIPS; case ANDROID_CPU_FAMILY_ARM64: return PROCESSOR_ARCHITECTURE_ARM64; case ANDROID_CPU_FAMILY_X86_64: return PROCESSOR_ARCHITECTURE_AMD64; case ANDROID_CPU_FAMILY_MIPS64: return PROCESSOR_ARCHITECTURE_MIPS64; default: return PROCESSOR_ARCHITECTURE_UNKNOWN; } #elif defined(_M_ARM) cpuArch = PROCESSOR_ARCHITECTURE_ARM; #elif defined(_M_IX86) cpuArch = PROCESSOR_ARCHITECTURE_INTEL; #elif defined(_M_MIPS64) /* Needs to be before __mips__ since the compiler defines both */ cpuArch = PROCESSOR_ARCHITECTURE_MIPS64; #elif defined(_M_MIPS) cpuArch = PROCESSOR_ARCHITECTURE_MIPS; #elif defined(_M_ARM64) cpuArch = PROCESSOR_ARCHITECTURE_ARM64; #elif defined(_M_AMD64) cpuArch = PROCESSOR_ARCHITECTURE_AMD64; #elif defined(_M_PPC) cpuArch = PROCESSOR_ARCHITECTURE_PPC; #elif defined(_M_ALPHA) cpuArch = PROCESSOR_ARCHITECTURE_ALPHA; #endif return cpuArch; } static DWORD GetNumberOfProcessors(void) { DWORD numCPUs = 1; #if defined(ANDROID) return android_getCpuCount(); /* TODO: iOS */ #elif defined(__linux__) || defined(__sun) || defined(_AIX) numCPUs = (DWORD)sysconf(_SC_NPROCESSORS_ONLN); #elif defined(__MACOSX__) || defined(__FreeBSD__) || defined(__NetBSD__) || \ defined(__OpenBSD__) || defined(__DragonFly__) { int mib[4]; size_t length = sizeof(numCPUs); mib[0] = CTL_HW; #if defined(__FreeBSD__) || defined(__OpenBSD__) mib[1] = HW_NCPU; #else mib[1] = HW_AVAILCPU; #endif sysctl(mib, 2, &numCPUs, &length, NULL, 0); if (numCPUs < 1) { mib[1] = HW_NCPU; sysctl(mib, 2, &numCPUs, &length, NULL, 0); if (numCPUs < 1) numCPUs = 1; } } #elif defined(__hpux) numCPUs = (DWORD)mpctl(MPC_GETNUMSPUS, NULL, NULL); #elif defined(__sgi) numCPUs = (DWORD)sysconf(_SC_NPROC_ONLN); #endif return numCPUs; } static DWORD GetSystemPageSize(void) { DWORD dwPageSize = 0; long sc_page_size = -1; #if defined(_SC_PAGESIZE) if (sc_page_size < 0) sc_page_size = sysconf(_SC_PAGESIZE); #endif #if defined(_SC_PAGE_SIZE) if (sc_page_size < 0) sc_page_size = sysconf(_SC_PAGE_SIZE); #endif if (sc_page_size > 0) dwPageSize = (DWORD)sc_page_size; if (dwPageSize < 4096) dwPageSize = 4096; return dwPageSize; } void GetSystemInfo(LPSYSTEM_INFO lpSystemInfo) { lpSystemInfo->wProcessorArchitecture = GetProcessorArchitecture(); lpSystemInfo->wReserved = 0; lpSystemInfo->dwPageSize = GetSystemPageSize(); lpSystemInfo->lpMinimumApplicationAddress = NULL; lpSystemInfo->lpMaximumApplicationAddress = NULL; lpSystemInfo->dwActiveProcessorMask = 0; lpSystemInfo->dwNumberOfProcessors = GetNumberOfProcessors(); lpSystemInfo->dwProcessorType = 0; lpSystemInfo->dwAllocationGranularity = 0; lpSystemInfo->wProcessorLevel = 0; lpSystemInfo->wProcessorRevision = 0; } void GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) { GetSystemInfo(lpSystemInfo); } void GetSystemTime(LPSYSTEMTIME lpSystemTime) { time_t ct = 0; struct tm* stm = NULL; WORD wMilliseconds = 0; ct = time(NULL); wMilliseconds = (WORD)(GetTickCount() % 1000); stm = gmtime(&ct); ZeroMemory(lpSystemTime, sizeof(SYSTEMTIME)); if (stm) { lpSystemTime->wYear = (WORD)(stm->tm_year + 1900); lpSystemTime->wMonth = (WORD)(stm->tm_mon + 1); lpSystemTime->wDayOfWeek = (WORD)stm->tm_wday; lpSystemTime->wDay = (WORD)stm->tm_mday; lpSystemTime->wHour = (WORD)stm->tm_hour; lpSystemTime->wMinute = (WORD)stm->tm_min; lpSystemTime->wSecond = (WORD)stm->tm_sec; lpSystemTime->wMilliseconds = wMilliseconds; } } BOOL SetSystemTime(CONST SYSTEMTIME* lpSystemTime) { /* TODO: Implement */ return FALSE; } VOID GetLocalTime(LPSYSTEMTIME lpSystemTime) { time_t ct = 0; struct tm* ltm = NULL; WORD wMilliseconds = 0; ct = time(NULL); wMilliseconds = (WORD)(GetTickCount() % 1000); ltm = localtime(&ct); ZeroMemory(lpSystemTime, sizeof(SYSTEMTIME)); if (ltm) { lpSystemTime->wYear = (WORD)(ltm->tm_year + 1900); lpSystemTime->wMonth = (WORD)(ltm->tm_mon + 1); lpSystemTime->wDayOfWeek = (WORD)ltm->tm_wday; lpSystemTime->wDay = (WORD)ltm->tm_mday; lpSystemTime->wHour = (WORD)ltm->tm_hour; lpSystemTime->wMinute = (WORD)ltm->tm_min; lpSystemTime->wSecond = (WORD)ltm->tm_sec; lpSystemTime->wMilliseconds = wMilliseconds; } } BOOL SetLocalTime(CONST SYSTEMTIME* lpSystemTime) { /* TODO: Implement */ return FALSE; } VOID GetSystemTimeAsFileTime(LPFILETIME lpSystemTimeAsFileTime) { ULARGE_INTEGER time64; time64.u.HighPart = 0; /* time represented in tenths of microseconds since midnight of January 1, 1601 */ time64.QuadPart = time(NULL) + 11644473600LL; /* Seconds since January 1, 1601 */ time64.QuadPart *= 10000000; /* Convert timestamp to tenths of a microsecond */ lpSystemTimeAsFileTime->dwLowDateTime = time64.u.LowPart; lpSystemTimeAsFileTime->dwHighDateTime = time64.u.HighPart; } BOOL GetSystemTimeAdjustment(PDWORD lpTimeAdjustment, PDWORD lpTimeIncrement, PBOOL lpTimeAdjustmentDisabled) { /* TODO: Implement */ return FALSE; } #ifndef CLOCK_MONOTONIC_RAW #define CLOCK_MONOTONIC_RAW 4 #endif DWORD GetTickCount(void) { DWORD ticks = 0; #ifdef __linux__ struct timespec ts; if (!clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) ticks = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); #else /** * FIXME: this is relative to the Epoch time, and we * need to return a value relative to the system uptime. */ struct timeval tv; if (!gettimeofday(&tv, NULL)) ticks = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); #endif return ticks; } #endif // _WIN32 #if !defined(_WIN32) || defined(_UWP) /* OSVERSIONINFOEX Structure: * http://msdn.microsoft.com/en-us/library/windows/desktop/ms724833 */ BOOL GetVersionExA(LPOSVERSIONINFOA lpVersionInformation) { #ifdef _UWP /* Windows 10 Version Info */ if ((lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOA)) || (lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOEXA))) { lpVersionInformation->dwMajorVersion = 10; lpVersionInformation->dwMinorVersion = 0; lpVersionInformation->dwBuildNumber = 0; lpVersionInformation->dwPlatformId = VER_PLATFORM_WIN32_NT; ZeroMemory(lpVersionInformation->szCSDVersion, sizeof(lpVersionInformation->szCSDVersion)); if (lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOEXA)) { LPOSVERSIONINFOEXA lpVersionInformationEx = (LPOSVERSIONINFOEXA)lpVersionInformation; lpVersionInformationEx->wServicePackMajor = 0; lpVersionInformationEx->wServicePackMinor = 0; lpVersionInformationEx->wSuiteMask = 0; lpVersionInformationEx->wProductType = VER_NT_WORKSTATION; lpVersionInformationEx->wReserved = 0; } return TRUE; } #else /* Windows 7 SP1 Version Info */ if ((lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOA)) || (lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOEXA))) { lpVersionInformation->dwMajorVersion = 6; lpVersionInformation->dwMinorVersion = 1; lpVersionInformation->dwBuildNumber = 7601; lpVersionInformation->dwPlatformId = VER_PLATFORM_WIN32_NT; ZeroMemory(lpVersionInformation->szCSDVersion, sizeof(lpVersionInformation->szCSDVersion)); if (lpVersionInformation->dwOSVersionInfoSize == sizeof(OSVERSIONINFOEXA)) { LPOSVERSIONINFOEXA lpVersionInformationEx = (LPOSVERSIONINFOEXA)lpVersionInformation; lpVersionInformationEx->wServicePackMajor = 1; lpVersionInformationEx->wServicePackMinor = 0; lpVersionInformationEx->wSuiteMask = 0; lpVersionInformationEx->wProductType = VER_NT_WORKSTATION; lpVersionInformationEx->wReserved = 0; } return TRUE; } #endif return FALSE; } BOOL GetVersionExW(LPOSVERSIONINFOW lpVersionInformation) { ZeroMemory(lpVersionInformation->szCSDVersion, sizeof(lpVersionInformation->szCSDVersion)); return GetVersionExA((LPOSVERSIONINFOA)lpVersionInformation); } #endif #if !defined(_WIN32) || defined(_UWP) BOOL GetComputerNameW(LPWSTR lpBuffer, LPDWORD lpnSize) { BOOL rc; LPSTR buffer = NULL; if (!lpnSize || (*lpnSize > INT_MAX)) return FALSE; if (*lpnSize > 0) { buffer = malloc(*lpnSize); if (!buffer) return FALSE; } rc = GetComputerNameA(buffer, lpnSize); if (rc && (*lpnSize > 0)) ConvertToUnicode(CP_UTF8, 0, buffer, (int)*lpnSize, &lpBuffer, (int)*lpnSize); free(buffer); return rc; } BOOL GetComputerNameA(LPSTR lpBuffer, LPDWORD lpnSize) { char* dot; size_t length; char hostname[256]; if (!lpnSize) { SetLastError(ERROR_BAD_ARGUMENTS); return FALSE; } if (gethostname(hostname, sizeof(hostname)) == -1) return FALSE; length = strnlen(hostname, sizeof(hostname)); dot = strchr(hostname, '.'); if (dot) length = (dot - hostname); if ((*lpnSize <= (DWORD)length) || !lpBuffer) { SetLastError(ERROR_BUFFER_OVERFLOW); *lpnSize = (DWORD)(length + 1); return FALSE; } CopyMemory(lpBuffer, hostname, length); lpBuffer[length] = '\0'; *lpnSize = (DWORD)length; return TRUE; } BOOL GetComputerNameExA(COMPUTER_NAME_FORMAT NameType, LPSTR lpBuffer, LPDWORD lpnSize) { size_t length; char hostname[256]; if (!lpnSize) { SetLastError(ERROR_BAD_ARGUMENTS); return FALSE; } if ((NameType == ComputerNameNetBIOS) || (NameType == ComputerNamePhysicalNetBIOS)) { BOOL rc = GetComputerNameA(lpBuffer, lpnSize); if (!rc) { if (GetLastError() == ERROR_BUFFER_OVERFLOW) SetLastError(ERROR_MORE_DATA); } return rc; } if (gethostname(hostname, sizeof(hostname)) == -1) return FALSE; length = strnlen(hostname, sizeof(hostname)); switch (NameType) { case ComputerNameDnsHostname: case ComputerNameDnsDomain: case ComputerNameDnsFullyQualified: case ComputerNamePhysicalDnsHostname: case ComputerNamePhysicalDnsDomain: case ComputerNamePhysicalDnsFullyQualified: if ((*lpnSize <= (DWORD)length) || !lpBuffer) { *lpnSize = (DWORD)(length + 1); SetLastError(ERROR_MORE_DATA); return FALSE; } CopyMemory(lpBuffer, hostname, length); lpBuffer[length] = '\0'; *lpnSize = (DWORD)length; break; default: return FALSE; } return TRUE; } BOOL GetComputerNameExW(COMPUTER_NAME_FORMAT NameType, LPWSTR lpBuffer, LPDWORD lpnSize) { BOOL rc; LPSTR lpABuffer = NULL; if (!lpnSize) { SetLastError(ERROR_BAD_ARGUMENTS); return FALSE; } if (*lpnSize > 0) { lpABuffer = calloc(*lpnSize, sizeof(CHAR)); if (!lpABuffer) return FALSE; } rc = GetComputerNameExA(NameType, lpABuffer, lpnSize); if (rc && (*lpnSize > 0)) ConvertToUnicode(CP_UTF8, 0, lpABuffer, *lpnSize, &lpBuffer, *lpnSize); free(lpABuffer); return rc; } #endif #if defined(_UWP) DWORD GetTickCount(void) { return (DWORD)GetTickCount64(); } #endif #if (!defined(_WIN32)) || (defined(_WIN32) && (_WIN32_WINNT < 0x0600)) ULONGLONG winpr_GetTickCount64(void) { ULONGLONG ticks = 0; #if defined(__linux__) struct timespec ts; if (!clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) ticks = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); #elif defined(_WIN32) FILETIME ft; ULARGE_INTEGER ul; GetSystemTimeAsFileTime(&ft); ul.LowPart = ft.dwLowDateTime; ul.HighPart = ft.dwHighDateTime; ticks = ul.QuadPart; #else /** * FIXME: this is relative to the Epoch time, and we * need to return a value relative to the system uptime. */ struct timeval tv; if (!gettimeofday(&tv, NULL)) ticks = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); #endif return ticks; } #endif /* If x86 */ #ifdef _M_IX86_AMD64 #if defined(__GNUC__) && defined(__AVX__) #define xgetbv(_func_, _lo_, _hi_) \ __asm__ __volatile__("xgetbv" : "=a"(_lo_), "=d"(_hi_) : "c"(_func_)) #endif #define D_BIT_MMX (1 << 23) #define D_BIT_SSE (1 << 25) #define D_BIT_SSE2 (1 << 26) #define D_BIT_3DN (1 << 30) #define C_BIT_SSE3 (1 << 0) #define C_BIT_PCLMULQDQ (1 << 1) #define C81_BIT_LZCNT (1 << 5) #define C_BIT_3DNP (1 << 8) #define C_BIT_3DNP (1 << 8) #define C_BIT_SSSE3 (1 << 9) #define C_BIT_SSE41 (1 << 19) #define C_BIT_SSE42 (1 << 20) #define C_BIT_FMA (1 << 12) #define C_BIT_AES (1 << 25) #define C_BIT_XGETBV (1 << 27) #define C_BIT_AVX (1 << 28) #define C_BITS_AVX (C_BIT_XGETBV | C_BIT_AVX) #define E_BIT_XMM (1 << 1) #define E_BIT_YMM (1 << 2) #define E_BITS_AVX (E_BIT_XMM | E_BIT_YMM) static void cpuid(unsigned info, unsigned* eax, unsigned* ebx, unsigned* ecx, unsigned* edx) { #ifdef __GNUC__ *eax = *ebx = *ecx = *edx = 0; __asm volatile( /* The EBX (or RBX register on x86_64) is used for the PIC base address * and must not be corrupted by our inline assembly. */ #ifdef _M_IX86 "mov %%ebx, %%esi;" "cpuid;" "xchg %%ebx, %%esi;" #else "mov %%rbx, %%rsi;" "cpuid;" "xchg %%rbx, %%rsi;" #endif : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx) : "0"(info)); #elif defined(_MSC_VER) int a[4]; __cpuid(a, info); *eax = a[0]; *ebx = a[1]; *ecx = a[2]; *edx = a[3]; #endif } #elif defined(_M_ARM) #if defined(__linux__) // HWCAP flags from linux kernel - uapi/asm/hwcap.h #define HWCAP_SWP (1 << 0) #define HWCAP_HALF (1 << 1) #define HWCAP_THUMB (1 << 2) #define HWCAP_26BIT (1 << 3) /* Play it safe */ #define HWCAP_FAST_MULT (1 << 4) #define HWCAP_FPA (1 << 5) #define HWCAP_VFP (1 << 6) #define HWCAP_EDSP (1 << 7) #define HWCAP_JAVA (1 << 8) #define HWCAP_IWMMXT (1 << 9) #define HWCAP_CRUNCH (1 << 10) #define HWCAP_THUMBEE (1 << 11) #define HWCAP_NEON (1 << 12) #define HWCAP_VFPv3 (1 << 13) #define HWCAP_VFPv3D16 (1 << 14) /* also set for VFPv4-D16 */ #define HWCAP_TLS (1 << 15) #define HWCAP_VFPv4 (1 << 16) #define HWCAP_IDIVA (1 << 17) #define HWCAP_IDIVT (1 << 18) #define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */ #define HWCAP_IDIV (HWCAP_IDIVA | HWCAP_IDIVT) // From linux kernel uapi/linux/auxvec.h #define AT_HWCAP 16 static unsigned GetARMCPUCaps(void) { unsigned caps = 0; int fd = open("/proc/self/auxv", O_RDONLY); if (fd == -1) return 0; static struct { unsigned a_type; /* Entry type */ unsigned a_val; /* Integer value */ } auxvec; while (1) { int num; num = read(fd, (char*)&auxvec, sizeof(auxvec)); if (num < 1 || (auxvec.a_type == 0 && auxvec.a_val == 0)) break; if (auxvec.a_type == AT_HWCAP) { caps = auxvec.a_val; } } close(fd); return caps; } #endif // defined(__linux__) #endif // _M_IX86_AMD64 #ifndef _WIN32 BOOL IsProcessorFeaturePresent(DWORD ProcessorFeature) { BOOL ret = FALSE; #if defined(ANDROID) const uint64_t features = android_getCpuFeatures(); switch (ProcessorFeature) { case PF_ARM_NEON_INSTRUCTIONS_AVAILABLE: case PF_ARM_NEON: return features & ANDROID_CPU_ARM_FEATURE_NEON; default: return FALSE; } #elif defined(_M_ARM) #ifdef __linux__ const unsigned caps = GetARMCPUCaps(); switch (ProcessorFeature) { case PF_ARM_NEON_INSTRUCTIONS_AVAILABLE: case PF_ARM_NEON: if (caps & HWCAP_NEON) ret = TRUE; break; case PF_ARM_THUMB: if (caps & HWCAP_THUMB) ret = TRUE; case PF_ARM_VFP_32_REGISTERS_AVAILABLE: if (caps & HWCAP_VFPD32) ret = TRUE; case PF_ARM_DIVIDE_INSTRUCTION_AVAILABLE: if ((caps & HWCAP_IDIVA) || (caps & HWCAP_IDIVT)) ret = TRUE; case PF_ARM_VFP3: if (caps & HWCAP_VFPv3) ret = TRUE; break; case PF_ARM_JAZELLE: if (caps & HWCAP_JAVA) ret = TRUE; break; case PF_ARM_DSP: if (caps & HWCAP_EDSP) ret = TRUE; break; case PF_ARM_MPU: if (caps & HWCAP_EDSP) ret = TRUE; break; case PF_ARM_THUMB2: if ((caps & HWCAP_IDIVT) || (caps & HWCAP_VFPv4)) ret = TRUE; break; case PF_ARM_T2EE: if (caps & HWCAP_THUMBEE) ret = TRUE; break; case PF_ARM_INTEL_WMMX: if (caps & HWCAP_IWMMXT) ret = TRUE; break; default: break; } #elif defined(__APPLE__) // __linux__ switch (ProcessorFeature) { case PF_ARM_NEON_INSTRUCTIONS_AVAILABLE: case PF_ARM_NEON: ret = TRUE; break; } #endif // __linux__ #elif defined(_M_IX86_AMD64) #ifdef __GNUC__ unsigned a, b, c, d; cpuid(1, &a, &b, &c, &d); switch (ProcessorFeature) { case PF_MMX_INSTRUCTIONS_AVAILABLE: if (d & D_BIT_MMX) ret = TRUE; break; case PF_XMMI_INSTRUCTIONS_AVAILABLE: if (d & D_BIT_SSE) ret = TRUE; break; case PF_XMMI64_INSTRUCTIONS_AVAILABLE: if (d & D_BIT_SSE2) ret = TRUE; break; case PF_3DNOW_INSTRUCTIONS_AVAILABLE: if (d & D_BIT_3DN) ret = TRUE; break; case PF_SSE3_INSTRUCTIONS_AVAILABLE: if (c & C_BIT_SSE3) ret = TRUE; break; default: break; } #endif // __GNUC__ #endif return ret; } #endif //_WIN32 DWORD GetTickCountPrecise(void) { #ifdef _WIN32 LARGE_INTEGER freq; LARGE_INTEGER current; QueryPerformanceFrequency(&freq); QueryPerformanceCounter(¤t); return (DWORD)(current.QuadPart * 1000LL / freq.QuadPart); #else return GetTickCount(); #endif } BOOL IsProcessorFeaturePresentEx(DWORD ProcessorFeature) { BOOL ret = FALSE; #ifdef _M_ARM #ifdef __linux__ unsigned caps; caps = GetARMCPUCaps(); switch (ProcessorFeature) { case PF_EX_ARM_VFP1: if (caps & HWCAP_VFP) ret = TRUE; break; case PF_EX_ARM_VFP3D16: if (caps & HWCAP_VFPv3D16) ret = TRUE; break; case PF_EX_ARM_VFP4: if (caps & HWCAP_VFPv4) ret = TRUE; break; case PF_EX_ARM_IDIVA: if (caps & HWCAP_IDIVA) ret = TRUE; break; case PF_EX_ARM_IDIVT: if (caps & HWCAP_IDIVT) ret = TRUE; break; } #endif // __linux__ #elif defined(_M_IX86_AMD64) unsigned a, b, c, d; cpuid(1, &a, &b, &c, &d); switch (ProcessorFeature) { case PF_EX_LZCNT: { unsigned a81, b81, c81, d81; cpuid(0x80000001, &a81, &b81, &c81, &d81); if (c81 & C81_BIT_LZCNT) ret = TRUE; } break; case PF_EX_3DNOW_PREFETCH: if (c & C_BIT_3DNP) ret = TRUE; break; case PF_EX_SSSE3: if (c & C_BIT_SSSE3) ret = TRUE; break; case PF_EX_SSE41: if (c & C_BIT_SSE41) ret = TRUE; break; case PF_EX_SSE42: if (c & C_BIT_SSE42) ret = TRUE; break; #if defined(__GNUC__) && defined(__AVX__) case PF_EX_AVX: case PF_EX_FMA: case PF_EX_AVX_AES: case PF_EX_AVX_PCLMULQDQ: { /* Check for general AVX support */ if ((c & C_BITS_AVX) != C_BITS_AVX) break; int e, f; xgetbv(0, e, f); /* XGETBV enabled for applications and XMM/YMM states enabled */ if ((e & E_BITS_AVX) == E_BITS_AVX) { switch (ProcessorFeature) { case PF_EX_AVX: ret = TRUE; break; case PF_EX_FMA: if (c & C_BIT_FMA) ret = TRUE; break; case PF_EX_AVX_AES: if (c & C_BIT_AES) ret = TRUE; break; case PF_EX_AVX_PCLMULQDQ: if (c & C_BIT_PCLMULQDQ) ret = TRUE; break; } } } break; #endif //__AVX__ default: break; } #endif return ret; }