/** * FreeRDP: A Remote Desktop Protocol Implementation * RemoteFX Codec Library - SSE2 Optimizations * * Copyright 2011 Stephen Erisman * Copyright 2011 Norbert Federa * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include "rfx_types.h" #include "rfx_sse2.h" #ifdef _MSC_VER #define __attribute__(...) #endif #define CACHE_LINE_BYTES 64 #ifndef __clang__ #define ATTRIBUTES __gnu_inline__, __always_inline__, __artificial__ #else #define ATTRIBUTES __gnu_inline__, __always_inline__ #endif #define _mm_between_epi16(_val, _min, _max) \ do { _val = _mm_min_epi16(_max, _mm_max_epi16(_val, _min)); } while (0) static __inline void __attribute__((ATTRIBUTES)) _mm_prefetch_buffer(char* buffer, int num_bytes) { __m128i* buf = (__m128i*) buffer; unsigned int i; for (i = 0; i < (num_bytes / sizeof(__m128i)); i += (CACHE_LINE_BYTES / sizeof(__m128i))) { _mm_prefetch((char*)(&buf[i]), _MM_HINT_NTA); } } /* rfx_decode_ycbcr_to_rgb_sse2 code now resides in the primitives library. */ /* rfx_encode_rgb_to_ycbcr_sse2 code now resides in the primitives library. */ static __inline void __attribute__((ATTRIBUTES)) rfx_quantization_decode_block_sse2(INT16* buffer, const int buffer_size, const UINT32 factor) { __m128i a; __m128i* ptr = (__m128i*) buffer; __m128i* buf_end = (__m128i*)(buffer + buffer_size); if (factor == 0) return; do { a = _mm_load_si128(ptr); a = _mm_slli_epi16(a, factor); _mm_store_si128(ptr, a); ptr++; } while (ptr < buf_end); } static void rfx_quantization_decode_sse2(INT16* buffer, const UINT32* quantVals) { _mm_prefetch_buffer((char*) buffer, 4096 * sizeof(INT16)); rfx_quantization_decode_block_sse2(&buffer[0], 1024, quantVals[8] - 1); /* HL1 */ rfx_quantization_decode_block_sse2(&buffer[1024], 1024, quantVals[7] - 1); /* LH1 */ rfx_quantization_decode_block_sse2(&buffer[2048], 1024, quantVals[9] - 1); /* HH1 */ rfx_quantization_decode_block_sse2(&buffer[3072], 256, quantVals[5] - 1); /* HL2 */ rfx_quantization_decode_block_sse2(&buffer[3328], 256, quantVals[4] - 1); /* LH2 */ rfx_quantization_decode_block_sse2(&buffer[3584], 256, quantVals[6] - 1); /* HH2 */ rfx_quantization_decode_block_sse2(&buffer[3840], 64, quantVals[2] - 1); /* HL3 */ rfx_quantization_decode_block_sse2(&buffer[3904], 64, quantVals[1] - 1); /* LH3 */ rfx_quantization_decode_block_sse2(&buffer[3968], 64, quantVals[3] - 1); /* HH3 */ rfx_quantization_decode_block_sse2(&buffer[4032], 64, quantVals[0] - 1); /* LL3 */ } static __inline void __attribute__((ATTRIBUTES)) rfx_quantization_encode_block_sse2(INT16* buffer, const int buffer_size, const UINT32 factor) { __m128i a; __m128i* ptr = (__m128i*) buffer; __m128i* buf_end = (__m128i*)(buffer + buffer_size); __m128i half; if (factor == 0) return; half = _mm_set1_epi16(1 << (factor - 1)); do { a = _mm_load_si128(ptr); a = _mm_add_epi16(a, half); a = _mm_srai_epi16(a, factor); _mm_store_si128(ptr, a); ptr++; } while (ptr < buf_end); } static void rfx_quantization_encode_sse2(INT16* buffer, const UINT32* quantization_values) { _mm_prefetch_buffer((char*) buffer, 4096 * sizeof(INT16)); rfx_quantization_encode_block_sse2(buffer, 1024, quantization_values[8] - 6); /* HL1 */ rfx_quantization_encode_block_sse2(buffer + 1024, 1024, quantization_values[7] - 6); /* LH1 */ rfx_quantization_encode_block_sse2(buffer + 2048, 1024, quantization_values[9] - 6); /* HH1 */ rfx_quantization_encode_block_sse2(buffer + 3072, 256, quantization_values[5] - 6); /* HL2 */ rfx_quantization_encode_block_sse2(buffer + 3328, 256, quantization_values[4] - 6); /* LH2 */ rfx_quantization_encode_block_sse2(buffer + 3584, 256, quantization_values[6] - 6); /* HH2 */ rfx_quantization_encode_block_sse2(buffer + 3840, 64, quantization_values[2] - 6); /* HL3 */ rfx_quantization_encode_block_sse2(buffer + 3904, 64, quantization_values[1] - 6); /* LH3 */ rfx_quantization_encode_block_sse2(buffer + 3968, 64, quantization_values[3] - 6); /* HH3 */ rfx_quantization_encode_block_sse2(buffer + 4032, 64, quantization_values[0] - 6); /* LL3 */ rfx_quantization_encode_block_sse2(buffer, 4096, 5); } static __inline void __attribute__((ATTRIBUTES)) rfx_dwt_2d_decode_block_horiz_sse2(INT16* l, INT16* h, INT16* dst, int subband_width) { int y, n; INT16* l_ptr = l; INT16* h_ptr = h; INT16* dst_ptr = dst; int first; int last; __m128i l_n; __m128i h_n; __m128i h_n_m; __m128i tmp_n; __m128i dst_n; __m128i dst_n_p; __m128i dst1; __m128i dst2; for (y = 0; y < subband_width; y++) { /* Even coefficients */ for (n = 0; n < subband_width; n += 8) { /* dst[2n] = l[n] - ((h[n-1] + h[n] + 1) >> 1); */ l_n = _mm_load_si128((__m128i*) l_ptr); h_n = _mm_load_si128((__m128i*) h_ptr); h_n_m = _mm_loadu_si128((__m128i*)(h_ptr - 1)); if (n == 0) { first = _mm_extract_epi16(h_n_m, 1); h_n_m = _mm_insert_epi16(h_n_m, first, 0); } tmp_n = _mm_add_epi16(h_n, h_n_m); tmp_n = _mm_add_epi16(tmp_n, _mm_set1_epi16(1)); tmp_n = _mm_srai_epi16(tmp_n, 1); dst_n = _mm_sub_epi16(l_n, tmp_n); _mm_store_si128((__m128i*) l_ptr, dst_n); l_ptr += 8; h_ptr += 8; } l_ptr -= subband_width; h_ptr -= subband_width; /* Odd coefficients */ for (n = 0; n < subband_width; n += 8) { /* dst[2n + 1] = (h[n] << 1) + ((dst[2n] + dst[2n + 2]) >> 1); */ h_n = _mm_load_si128((__m128i*) h_ptr); h_n = _mm_slli_epi16(h_n, 1); dst_n = _mm_load_si128((__m128i*)(l_ptr)); dst_n_p = _mm_loadu_si128((__m128i*)(l_ptr + 1)); if (n == subband_width - 8) { last = _mm_extract_epi16(dst_n_p, 6); dst_n_p = _mm_insert_epi16(dst_n_p, last, 7); } tmp_n = _mm_add_epi16(dst_n_p, dst_n); tmp_n = _mm_srai_epi16(tmp_n, 1); tmp_n = _mm_add_epi16(tmp_n, h_n); dst1 = _mm_unpacklo_epi16(dst_n, tmp_n); dst2 = _mm_unpackhi_epi16(dst_n, tmp_n); _mm_store_si128((__m128i*) dst_ptr, dst1); _mm_store_si128((__m128i*)(dst_ptr + 8), dst2); l_ptr += 8; h_ptr += 8; dst_ptr += 16; } } } static __inline void __attribute__((ATTRIBUTES)) rfx_dwt_2d_decode_block_vert_sse2(INT16* l, INT16* h, INT16* dst, int subband_width) { int x, n; INT16* l_ptr = l; INT16* h_ptr = h; INT16* dst_ptr = dst; __m128i l_n; __m128i h_n; __m128i tmp_n; __m128i h_n_m; __m128i dst_n; __m128i dst_n_m; __m128i dst_n_p; int total_width = subband_width + subband_width; /* Even coefficients */ for (n = 0; n < subband_width; n++) { for (x = 0; x < total_width; x += 8) { /* dst[2n] = l[n] - ((h[n-1] + h[n] + 1) >> 1); */ l_n = _mm_load_si128((__m128i*) l_ptr); h_n = _mm_load_si128((__m128i*) h_ptr); tmp_n = _mm_add_epi16(h_n, _mm_set1_epi16(1)); if (n == 0) tmp_n = _mm_add_epi16(tmp_n, h_n); else { h_n_m = _mm_loadu_si128((__m128i*)(h_ptr - total_width)); tmp_n = _mm_add_epi16(tmp_n, h_n_m); } tmp_n = _mm_srai_epi16(tmp_n, 1); dst_n = _mm_sub_epi16(l_n, tmp_n); _mm_store_si128((__m128i*) dst_ptr, dst_n); l_ptr += 8; h_ptr += 8; dst_ptr += 8; } dst_ptr += total_width; } h_ptr = h; dst_ptr = dst + total_width; /* Odd coefficients */ for (n = 0; n < subband_width; n++) { for (x = 0; x < total_width; x += 8) { /* dst[2n + 1] = (h[n] << 1) + ((dst[2n] + dst[2n + 2]) >> 1); */ h_n = _mm_load_si128((__m128i*) h_ptr); dst_n_m = _mm_load_si128((__m128i*)(dst_ptr - total_width)); h_n = _mm_slli_epi16(h_n, 1); tmp_n = dst_n_m; if (n == subband_width - 1) tmp_n = _mm_add_epi16(tmp_n, dst_n_m); else { dst_n_p = _mm_loadu_si128((__m128i*)(dst_ptr + total_width)); tmp_n = _mm_add_epi16(tmp_n, dst_n_p); } tmp_n = _mm_srai_epi16(tmp_n, 1); dst_n = _mm_add_epi16(tmp_n, h_n); _mm_store_si128((__m128i*) dst_ptr, dst_n); h_ptr += 8; dst_ptr += 8; } dst_ptr += total_width; } } static __inline void __attribute__((ATTRIBUTES)) rfx_dwt_2d_decode_block_sse2(INT16* buffer, INT16* idwt, int subband_width) { INT16* hl, *lh, *hh, *ll; INT16* l_dst, *h_dst; _mm_prefetch_buffer((char*) idwt, subband_width * 4 * sizeof(INT16)); /* Inverse DWT in horizontal direction, results in 2 sub-bands in L, H order in tmp buffer idwt. */ /* The 4 sub-bands are stored in HL(0), LH(1), HH(2), LL(3) order. */ /* The lower part L uses LL(3) and HL(0). */ /* The higher part H uses LH(1) and HH(2). */ ll = buffer + subband_width * subband_width * 3; hl = buffer; l_dst = idwt; rfx_dwt_2d_decode_block_horiz_sse2(ll, hl, l_dst, subband_width); lh = buffer + subband_width * subband_width; hh = buffer + subband_width * subband_width * 2; h_dst = idwt + subband_width * subband_width * 2; rfx_dwt_2d_decode_block_horiz_sse2(lh, hh, h_dst, subband_width); /* Inverse DWT in vertical direction, results are stored in original buffer. */ rfx_dwt_2d_decode_block_vert_sse2(l_dst, h_dst, buffer, subband_width); } static void rfx_dwt_2d_decode_sse2(INT16* buffer, INT16* dwt_buffer) { _mm_prefetch_buffer((char*) buffer, 4096 * sizeof(INT16)); rfx_dwt_2d_decode_block_sse2(&buffer[3840], dwt_buffer, 8); rfx_dwt_2d_decode_block_sse2(&buffer[3072], dwt_buffer, 16); rfx_dwt_2d_decode_block_sse2(&buffer[0], dwt_buffer, 32); } static __inline void __attribute__((ATTRIBUTES)) rfx_dwt_2d_encode_block_vert_sse2(INT16* src, INT16* l, INT16* h, int subband_width) { int total_width; int x; int n; __m128i src_2n; __m128i src_2n_1; __m128i src_2n_2; __m128i h_n; __m128i h_n_m; __m128i l_n; total_width = subband_width << 1; for (n = 0; n < subband_width; n++) { for (x = 0; x < total_width; x += 8) { src_2n = _mm_load_si128((__m128i*) src); src_2n_1 = _mm_load_si128((__m128i*)(src + total_width)); if (n < subband_width - 1) src_2n_2 = _mm_load_si128((__m128i*)(src + 2 * total_width)); else src_2n_2 = src_2n; /* h[n] = (src[2n + 1] - ((src[2n] + src[2n + 2]) >> 1)) >> 1 */ h_n = _mm_add_epi16(src_2n, src_2n_2); h_n = _mm_srai_epi16(h_n, 1); h_n = _mm_sub_epi16(src_2n_1, h_n); h_n = _mm_srai_epi16(h_n, 1); _mm_store_si128((__m128i*) h, h_n); if (n == 0) h_n_m = h_n; else h_n_m = _mm_load_si128((__m128i*)(h - total_width)); /* l[n] = src[2n] + ((h[n - 1] + h[n]) >> 1) */ l_n = _mm_add_epi16(h_n_m, h_n); l_n = _mm_srai_epi16(l_n, 1); l_n = _mm_add_epi16(l_n, src_2n); _mm_store_si128((__m128i*) l, l_n); src += 8; l += 8; h += 8; } src += total_width; } } static __inline void __attribute__((ATTRIBUTES)) rfx_dwt_2d_encode_block_horiz_sse2(INT16* src, INT16* l, INT16* h, int subband_width) { int y; int n; int first; __m128i src_2n; __m128i src_2n_1; __m128i src_2n_2; __m128i h_n; __m128i h_n_m; __m128i l_n; for (y = 0; y < subband_width; y++) { for (n = 0; n < subband_width; n += 8) { /* The following 3 Set operations consumes more than half of the total DWT processing time! */ src_2n = _mm_set_epi16(src[14], src[12], src[10], src[8], src[6], src[4], src[2], src[0]); src_2n_1 = _mm_set_epi16(src[15], src[13], src[11], src[9], src[7], src[5], src[3], src[1]); src_2n_2 = _mm_set_epi16(n == subband_width - 8 ? src[14] : src[16], src[14], src[12], src[10], src[8], src[6], src[4], src[2]); /* h[n] = (src[2n + 1] - ((src[2n] + src[2n + 2]) >> 1)) >> 1 */ h_n = _mm_add_epi16(src_2n, src_2n_2); h_n = _mm_srai_epi16(h_n, 1); h_n = _mm_sub_epi16(src_2n_1, h_n); h_n = _mm_srai_epi16(h_n, 1); _mm_store_si128((__m128i*) h, h_n); h_n_m = _mm_loadu_si128((__m128i*)(h - 1)); if (n == 0) { first = _mm_extract_epi16(h_n_m, 1); h_n_m = _mm_insert_epi16(h_n_m, first, 0); } /* l[n] = src[2n] + ((h[n - 1] + h[n]) >> 1) */ l_n = _mm_add_epi16(h_n_m, h_n); l_n = _mm_srai_epi16(l_n, 1); l_n = _mm_add_epi16(l_n, src_2n); _mm_store_si128((__m128i*) l, l_n); src += 16; l += 8; h += 8; } } } static __inline void __attribute__((ATTRIBUTES)) rfx_dwt_2d_encode_block_sse2(INT16* buffer, INT16* dwt, int subband_width) { INT16* hl, *lh, *hh, *ll; INT16* l_src, *h_src; _mm_prefetch_buffer((char*) dwt, subband_width * 4 * sizeof(INT16)); /* DWT in vertical direction, results in 2 sub-bands in L, H order in tmp buffer dwt. */ l_src = dwt; h_src = dwt + subband_width * subband_width * 2; rfx_dwt_2d_encode_block_vert_sse2(buffer, l_src, h_src, subband_width); /* DWT in horizontal direction, results in 4 sub-bands in HL(0), LH(1), HH(2), LL(3) order, stored in original buffer. */ /* The lower part L generates LL(3) and HL(0). */ /* The higher part H generates LH(1) and HH(2). */ ll = buffer + subband_width * subband_width * 3; hl = buffer; lh = buffer + subband_width * subband_width; hh = buffer + subband_width * subband_width * 2; rfx_dwt_2d_encode_block_horiz_sse2(l_src, ll, hl, subband_width); rfx_dwt_2d_encode_block_horiz_sse2(h_src, lh, hh, subband_width); } static void rfx_dwt_2d_encode_sse2(INT16* buffer, INT16* dwt_buffer) { _mm_prefetch_buffer((char*) buffer, 4096 * sizeof(INT16)); rfx_dwt_2d_encode_block_sse2(buffer, dwt_buffer, 32); rfx_dwt_2d_encode_block_sse2(buffer + 3072, dwt_buffer, 16); rfx_dwt_2d_encode_block_sse2(buffer + 3840, dwt_buffer, 8); } void rfx_init_sse2(RFX_CONTEXT* context) { if (!IsProcessorFeaturePresent(PF_XMMI64_INSTRUCTIONS_AVAILABLE)) return; PROFILER_RENAME(context->priv->prof_rfx_quantization_decode, "rfx_quantization_decode_sse2"); PROFILER_RENAME(context->priv->prof_rfx_quantization_encode, "rfx_quantization_encode_sse2"); PROFILER_RENAME(context->priv->prof_rfx_dwt_2d_decode, "rfx_dwt_2d_decode_sse2"); PROFILER_RENAME(context->priv->prof_rfx_dwt_2d_encode, "rfx_dwt_2d_encode_sse2"); context->quantization_decode = rfx_quantization_decode_sse2; context->quantization_encode = rfx_quantization_encode_sse2; context->dwt_2d_decode = rfx_dwt_2d_decode_sse2; context->dwt_2d_encode = rfx_dwt_2d_encode_sse2; }