/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000-2009 Josh Coalson * Copyright (C) 2011-2016 Xiph.Org Foundation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H # include #endif #include "private/cpu.h" #ifndef FLAC__INTEGER_ONLY_LIBRARY #ifndef FLAC__NO_ASM #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN #include "private/fixed.h" #ifdef FLAC__SSSE3_SUPPORTED #include /* SSSE3 */ #include #include "private/macros.h" #include "share/compat.h" #include "FLAC/assert.h" #ifdef FLAC__CPU_IA32 #define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src) #else #define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src) #endif FLAC__SSE_TARGET("ssse3") unsigned FLAC__fixed_compute_best_predictor_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) { FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; unsigned i, order; __m128i total_err0, total_err1, total_err2; { FLAC__int32 itmp; __m128i last_error; last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0 itmp = data[-2]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1 itmp -= data[-3]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2 itmp -= data[-3] - data[-4]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3 total_err0 = total_err1 = _mm_setzero_si128(); for(i = 0; i < data_len; i++) { __m128i err0, err1; err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0 err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0 #if 1 /* OPT_SSE */ err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2 err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1 err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 #else last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1 last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 #endif last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3 err0 = _mm_abs_epi32(err0); err1 = _mm_abs_epi32(err1); total_err0 = _mm_add_epi32(total_err0, err0); // 0 0 0 te0 total_err1 = _mm_add_epi32(total_err1, err1); // te1 te2 te3 te4 } } total_error_0 = _mm_cvtsi128_si32(total_err0); total_err2 = total_err1; // te1 te2 te3 te4 total_err1 = _mm_srli_si128(total_err1, 8); // 0 0 te1 te2 total_error_4 = _mm_cvtsi128_si32(total_err2); total_error_2 = _mm_cvtsi128_si32(total_err1); total_err2 = _mm_srli_si128(total_err2, 4); // 0 te1 te2 te3 total_err1 = _mm_srli_si128(total_err1, 4); // 0 0 0 te1 total_error_3 = _mm_cvtsi128_si32(total_err2); total_error_1 = _mm_cvtsi128_si32(total_err1); /* prefer higher order */ if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) order = 0; else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4)) order = 1; else if(total_error_2 < flac_min(total_error_3, total_error_4)) order = 2; else if(total_error_3 < total_error_4) order = 3; else order = 4; /* Estimate the expected number of bits per residual signal sample. */ /* 'total_error*' is linearly related to the variance of the residual */ /* signal, so we use it directly to compute E(|x|) */ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); FLAC__ASSERT(data_len > 0 || total_error_1 == 0); FLAC__ASSERT(data_len > 0 || total_error_2 == 0); FLAC__ASSERT(data_len > 0 || total_error_3 == 0); FLAC__ASSERT(data_len > 0 || total_error_4 == 0); residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); return order; } FLAC__SSE_TARGET("ssse3") unsigned FLAC__fixed_compute_best_predictor_wide_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) { FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; unsigned i, order; __m128i total_err0, total_err1, total_err3; { FLAC__int32 itmp; __m128i last_error, zero = _mm_setzero_si128(); last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0 itmp = data[-2]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1 itmp -= data[-3]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2 itmp -= data[-3] - data[-4]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3 total_err0 = total_err1 = total_err3 = _mm_setzero_si128(); for(i = 0; i < data_len; i++) { __m128i err0, err1; err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0 err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0 #if 1 /* OPT_SSE */ err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2 err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1 err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 #else last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1 last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 #endif last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3 err0 = _mm_abs_epi32(err0); err1 = _mm_abs_epi32(err1); // |e1| |e2| |e3| |e4| total_err0 = _mm_add_epi64(total_err0, err0); // 0 te0 err0 = _mm_unpacklo_epi32(err1, zero); // 0 |e3| 0 |e4| err1 = _mm_unpackhi_epi32(err1, zero); // 0 |e1| 0 |e2| total_err3 = _mm_add_epi64(total_err3, err0); // te3 te4 total_err1 = _mm_add_epi64(total_err1, err1); // te1 te2 } } m128i_to_i64(total_error_0, total_err0); m128i_to_i64(total_error_4, total_err3); m128i_to_i64(total_error_2, total_err1); total_err3 = _mm_srli_si128(total_err3, 8); // 0 te3 total_err1 = _mm_srli_si128(total_err1, 8); // 0 te1 m128i_to_i64(total_error_3, total_err3); m128i_to_i64(total_error_1, total_err1); /* prefer higher order */ if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) order = 0; else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4)) order = 1; else if(total_error_2 < flac_min(total_error_3, total_error_4)) order = 2; else if(total_error_3 < total_error_4) order = 3; else order = 4; /* Estimate the expected number of bits per residual signal sample. */ /* 'total_error*' is linearly related to the variance of the residual */ /* signal, so we use it directly to compute E(|x|) */ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); FLAC__ASSERT(data_len > 0 || total_error_1 == 0); FLAC__ASSERT(data_len > 0 || total_error_2 == 0); FLAC__ASSERT(data_len > 0 || total_error_3 == 0); FLAC__ASSERT(data_len > 0 || total_error_4 == 0); residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); return order; } #endif /* FLAC__SSSE3_SUPPORTED */ #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ #endif /* FLAC__NO_ASM */ #endif /* FLAC__INTEGER_ONLY_LIBRARY */