//C- -*- C++ -*- //C- ------------------------------------------------------------------- //C- DjVuLibre-3.5 //C- Copyright (c) 2002 Leon Bottou and Yann Le Cun. //C- Copyright (c) 2001 AT&T //C- //C- This software is subject to, and may be distributed under, the //C- GNU General Public License, either Version 2 of the license, //C- or (at your option) any later version. The license should have //C- accompanied the software or you may obtain a copy of the license //C- from the Free Software Foundation at http://www.fsf.org . //C- //C- This program is distributed in the hope that it will be useful, //C- but WITHOUT ANY WARRANTY; without even the implied warranty of //C- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //C- GNU General Public License for more details. //C- //C- DjVuLibre-3.5 is derived from the DjVu(r) Reference Library from //C- Lizardtech Software. Lizardtech Software has authorized us to //C- replace the original DjVu(r) Reference Library notice by the following //C- text (see doc/lizard2002.djvu and doc/lizardtech2007.djvu): //C- //C- ------------------------------------------------------------------ //C- | DjVu (r) Reference Library (v. 3.5) //C- | Copyright (c) 1999-2001 LizardTech, Inc. All Rights Reserved. //C- | The DjVu Reference Library is protected by U.S. Pat. No. //C- | 6,058,214 and patents pending. //C- | //C- | This software is subject to, and may be distributed under, the //C- | GNU General Public License, either Version 2 of the license, //C- | or (at your option) any later version. The license should have //C- | accompanied the software or you may obtain a copy of the license //C- | from the Free Software Foundation at http://www.fsf.org . //C- | //C- | The computer code originally released by LizardTech under this //C- | license and unmodified by other parties is deemed "the LIZARDTECH //C- | ORIGINAL CODE." Subject to any third party intellectual property //C- | claims, LizardTech grants recipient a worldwide, royalty-free, //C- | non-exclusive license to make, use, sell, or otherwise dispose of //C- | the LIZARDTECH ORIGINAL CODE or of programs derived from the //C- | LIZARDTECH ORIGINAL CODE in compliance with the terms of the GNU //C- | General Public License. This grant only confers the right to //C- | infringe patent claims underlying the LIZARDTECH ORIGINAL CODE to //C- | the extent such infringement is reasonably necessary to enable //C- | recipient to make, have made, practice, sell, or otherwise dispose //C- | of the LIZARDTECH ORIGINAL CODE (or portions thereof) and not to //C- | any greater extent that may be necessary to utilize further //C- | modifications or combinations. //C- | //C- | The LIZARDTECH ORIGINAL CODE is provided "AS IS" WITHOUT WARRANTY //C- | OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED //C- | TO ANY WARRANTY OF NON-INFRINGEMENT, OR ANY IMPLIED WARRANTY OF //C- | MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. //C- +------------------------------------------------------------------ #ifdef HAVE_CONFIG_H # include "config.h" #endif #if NEED_GNUG_PRAGMAS # pragma implementation #endif /** @name cjb2 {\bf Synopsis} \begin{verbatim} cjb2 [options] \end{verbatim} {\bf Description} File #"cjb2.cpp"# demonstrates a simple encoder for Bilevel DjVu Images. It is able to perform lossless encoding and limited lossy encoding. Lots of lossy encoding refinements are missing from this simple implementation. Comments in the code suggest a few improvements. Options are: \begin{description} \item[-dpi xxx] Specify image resolution (default 300). \item[-lossless] Lossless compression (same as -losslevel 0, default). \item[-clean] Quasi-lossless compression (same as -losslevel 1). \item[-lossy] Lossy compression (same as -losslevel 100). \item[-losslevel n] Set loss level (0 to 200) \item[-verbose] Display additional messages. \end{description} Encoding is lossless unless one or several lossy options are selected. The #dpi# argument mostly affects the cleaning thresholds. {\bf Bugs} This is not the full-fledged multipage DjVu compressor, but merely a free tool provided with the DjVu Reference Library as a demonstrative example. @memo Simple JB2 encoder. @author L\'eon Bottou \\ Paul Howard \\ Pascal Vincent \\ Ilya Mezhirov */ //@{ //@} #include "DjVuGlobal.h" #include "GException.h" #include "GSmartPointer.h" #include "GContainer.h" #include "ByteStream.h" #include "IFFByteStream.h" #include "GRect.h" #include "GBitmap.h" #include "JB2Image.h" #include "DjVuInfo.h" #include "GOS.h" #include "GURL.h" #include "DjVuMessage.h" #include "jb2tune.h" #include "common.h" #if HAVE_TIFF #include #endif // -------------------------------------------------- // UTILITIES // -------------------------------------------------- #ifdef MIN #undef MIN #endif inline int MIN(int a, int b) { return ( ab ?a :b); } // -------------------------------------------------- // CONNECTED COMPONENT ANALYSIS AND CLEANING // -------------------------------------------------- // -- A run of black pixels struct Run { int y; // vertical coordinate short x1; // first horizontal coordinate short x2; // last horizontal coordinate int ccid; // component id }; // -- A component descriptor struct CC { GRect bb; // bounding box int npix; // number of black pixels int nrun; // number of runs int frun; // first run in cc ordered array of runs }; // -- An image composed of runs class CCImage { public: int height; // Height of the image in pixels int width; // Width of the image in pixels GTArray runs; // array of runs GTArray ccs; // Array of component descriptors int nregularccs; // Number of regular ccs (set by merge_and_split_ccs) int largesize; // CCs larger than that are special int smallsize; // CCs smaller than that are special int tinysize; // CCs smaller than that may be removed CCImage(); void init(int width, int height, int dpi); void add_single_run(int y, int x1, int x2, int ccid=0); void add_bitmap_runs(const GBitmap &bm, int offx=0, int offy=0, int ccid=0); GP get_bitmap_for_cc(int ccid) const; GP get_jb2image() const; void make_ccids_by_analysis(); void make_ccs_from_ccids(); void erase_tiny_ccs(); void merge_and_split_ccs(); void sort_in_reading_order(); }; // -- Compares runs static inline bool operator <= (const Run &a, const Run &b) { return (a.y umap; for (n=0; n<=runs.hbound(); n++) { int y = runs[n].y; int x1 = runs[n].x1 - 1; int x2 = runs[n].x2 + 1; int id = (umap.hbound() + 1); // iterate over previous line runs for(;runs[p].y < y-1;p++); for(;(runs[p].y < y) && (runs[p].x1 <= x2);p++ ) { if ( runs[p].x2 >= x1 ) { // previous run touches current run int oid = runs[p].ccid; while (umap[oid] < oid) oid = umap[oid]; if ((int)id > umap.hbound()) { id = oid; } else if (id < oid) { umap[oid] = id; } else { umap[id] = oid; id = oid; } // freshen previous run id runs[p].ccid = id; // stop if previous run goes past current run if (runs[p].x2 >= x2) break; } } // create new entry in umap runs[n].ccid = id; if (id > umap.hbound()) { umap.touch(id); umap[id] = id; } } // Update umap and ccid for (n=0; n<=runs.hbound(); n++) { Run &run = runs[n]; int ccid = run.ccid; while (umap[ccid] < ccid) { ccid = umap[ccid]; } umap[run.ccid] = ccid; run.ccid = ccid; } } // -- Constructs the ``ccs'' array from run's ccids. void CCImage::make_ccs_from_ccids() { int n; Run *pruns = runs; // Find maximal ccid int maxccid = nregularccs-1; for (n=0; n<=runs.hbound(); n++) if (pruns[n].ccid > maxccid) maxccid = runs[n].ccid; // Renumber ccs GTArray armap(0,maxccid); int *rmap = armap; for (n=0; n<=maxccid; n++) armap[n] = -1; for (n=0; n<=runs.hbound(); n++) if (pruns[n].ccid >= 0) rmap[ pruns[n].ccid ] = 1; int nid = 0; for (n=0; n<=maxccid; n++) if (rmap[n] > 0) rmap[n] = nid++; // Adjust nregularccs (since ccs are renumbered) while (nregularccs>0 && rmap[nregularccs-1]<0) nregularccs -= 1; if (nregularccs>0) nregularccs = 1 + rmap[nregularccs-1]; // Prepare cc descriptors ccs.resize(0,nid-1); for (n=0; n rtmp; rtmp.steal(runs); Run *ptmp = rtmp; runs.resize(0,frun-1); pruns = runs; for (n=0; n<=rtmp.hbound(); n++) { int id = ptmp[n].ccid; if (id < 0) continue; int pos = rmap[id]++; pruns[pos] = ptmp[n]; } // Finalize ccs for (n=0; nx1; int xmax = run->x2; int ymin = run->y; int ymax = run->y; for (int i=0; ix1 < xmin) xmin = run->x1; if (run->x2 > xmax) xmax = run->x2; if (run->y < ymin) ymin = run->y; if (run->y > ymax) ymax = run->y; npix += run->x2 - run->x1 + 1; } cc.npix = npix; cc.bb.xmin = xmin; cc.bb.ymin = ymin; cc.bb.xmax = xmax + 1; cc.bb.ymax = ymax + 1; } } // Removes ccs which are too small. void CCImage::erase_tiny_ccs() { // ISSUE: HALFTONE DETECTION // We should not remove tiny ccs if they are part of a halftone pattern... for (int i=0; i= 0) (r++)->ccid = -1; } } } // -- Merges small ccs and split large ccs void CCImage::merge_and_split_ccs() { int ncc = ccs.size(); int nruns = runs.size(); int splitsize = largesize; if (ncc <= 0) return; // Grid of special components int gridwidth = (width+splitsize-1)/splitsize; nregularccs = ncc; // Set the correct ccids for the runs for (int ccid=0; ccidnrun <= 0) continue; int ccheight = cc->bb.height(); int ccwidth = cc->bb.width(); if (ccheight<=smallsize && ccwidth<=smallsize) { int gridi = (cc->bb.ymin+cc->bb.ymax)/splitsize/2; int gridj = (cc->bb.xmin+cc->bb.xmax)/splitsize/2; int newccid = ncc + gridi*gridwidth + gridj; for(int runid=cc->frun; runidfrun+cc->nrun; runid++) runs[runid].ccid = newccid; } else if (ccheight>=largesize || ccwidth>=largesize) { for(int runid=cc->frun; runidfrun+cc->nrun; runid++) { Run& r = runs[runid]; int y = r.y; int x_start = r.x1; int x_end = r.x2; int gridi = y/splitsize; int gridj_start = x_start/splitsize; int gridj_end = x_end/splitsize; int gridj_span = gridj_end-gridj_start; int newccid = ncc + gridi*gridwidth + gridj_start; if (! gridj_span) { r.ccid = newccid; } else // gridj_span>0 { // truncate the current run r.ccid = newccid++; int x = (gridj_start+1)*splitsize; r.x2 = x-1; runs.touch(nruns+gridj_span-1); // append additional runs to the runs array for(int gridj=gridj_start+1; gridjbb.ymax != ((CC*) pb)->bb.ymax) return (((CC*) pb)->bb.ymax - ((CC*) pa)->bb.ymax); if (((CC*) pa)->bb.xmin != ((CC*) pb)->bb.xmin) return (((CC*) pa)->bb.xmin - ((CC*) pb)->bb.xmin); return (((CC*) pa)->frun - ((CC*) pb)->frun); } // -- Helps sorting cc static int left_edges_ascending (const void *pa, const void *pb) { if (((CC*) pa)->bb.xmin != ((CC*) pb)->bb.xmin) return (((CC*) pa)->bb.xmin - ((CC*) pb)->bb.xmin); if (((CC*) pb)->bb.ymax != ((CC*) pa)->bb.ymax) return (((CC*) pb)->bb.ymax - ((CC*) pa)->bb.ymax); return (((CC*) pa)->frun - ((CC*) pb)->frun); } // -- Helps sorting cc static int integer_ascending (const void *pa, const void *pb) { return ( *(int*)pb - *(int*)pa ); } // -- Sort ccs in approximate reading order void CCImage::sort_in_reading_order() { if (nregularccs<2) return; CC *ccarray = new CC[nregularccs]; // Copy existing ccarray (but segregate special ccs) int ccid; for(ccid=0; ccid ccno + 1) { // - Compute median bottom qsort(bottoms, nccno-ccno, sizeof(int), integer_ascending); int bottom = bottoms[ (nccno-ccno-1)/2 ]; // - Compose final line for (nccno=ccno; nccno < nregularccs; nccno++) if (ccarray[nccno].bb.ymax-1 < bottom) break; // - Sort final line qsort (ccarray+ccno, nccno-ccno, sizeof(CC), left_edges_ascending); } // - Next line ccno = nccno; } // Copy ccarray back and renumber the runs for(ccid=0; ccid CCImage::get_bitmap_for_cc(const int ccid) const { const CC &cc = ccs[ccid]; const GRect &bb = cc.bb; GP bits = GBitmap::create(bb.height(), bb.width()); const Run *prun = & runs[(int)cc.frun]; for (int i=0; iyy>=bb.ymax) G_THROW("Internal error (y bounds)"); if (prun->x1x2>=bb.xmax) G_THROW("Internal error (x bounds)"); unsigned char *row = (*bits)[prun->y - bb.ymin]; for (int x=prun->x1; x<=prun->x2; x++) row[x - bb.xmin] = 1; } return bits; } // -- Creates a JB2Image with the remaining components GP CCImage::get_jb2image() const { GP jimg = JB2Image::create(); jimg->set_dimension(width, height); if (runs.hbound() < 0) return jimg; if (ccs.hbound() < 0) G_THROW("Must first perform a cc analysis"); // Iterate over CCs for (int ccid=0; ccid<=ccs.hbound(); ccid++) { JB2Shape shape; JB2Blit blit; shape.parent = -1; shape.bits = get_bitmap_for_cc(ccid); shape.userdata = 0; if (ccid >= nregularccs) shape.userdata |= JB2SHAPE_SPECIAL; blit.shapeno = jimg->add_shape(shape); blit.left = ccs[ccid].bb.xmin; blit.bottom = ccs[ccid].bb.ymin; jimg->add_blit(blit); shape.bits->compress(); } // Return return jimg; } // -------------------------------------------------- // COMPLETE COMPRESSION ROUTINE // -------------------------------------------------- struct cjb2opts { int dpi; int forcedpi; int losslevel; bool verbose; }; #if HAVE_TIFF static int is_tiff(ByteStream *ref) { char magic[2]; magic[0] = magic[1] = 0; ref->readall((void*)magic, sizeof(magic)); ref->seek(0); if(magic[0] == 'I' && magic[1] == 'I') return 1; if(magic[0] == 'M' && magic[1] == 'M') return 1; return 0; } static tsize_t readproc(thandle_t h, tdata_t p, tsize_t s) { ByteStream *bs = (ByteStream*)h; return (tsize_t) bs->readall((void*)p, (size_t)s); } static tsize_t writeproc(thandle_t, tdata_t, tsize_t) { return -1; } static toff_t seekproc(thandle_t h, toff_t offset, int mode) { ByteStream *bs = (ByteStream*)h; bs->seek((long)offset, mode); return (toff_t)bs->tell(); } static int closeproc(thandle_t) { return 0; } static toff_t sizeproc(thandle_t h) { ByteStream *bs = (ByteStream*)h; return (toff_t) bs->size(); } static int mapproc(thandle_t, tdata_t*, toff_t*) { return -1; } static void unmapproc(thandle_t, tdata_t, toff_t) { } static void read_tiff(CCImage &rimg, ByteStream *bs, cjb2opts &opts) { TIFF *tiff = TIFFClientOpen("libtiff", "rm", (thandle_t)bs, readproc, writeproc, seekproc, closeproc, sizeproc, mapproc, unmapproc ); // bitonal uint16 bps = 0, spp = 0; TIFFGetFieldDefaulted(tiff, TIFFTAG_BITSPERSAMPLE, &bps); TIFFGetFieldDefaulted(tiff, TIFFTAG_SAMPLESPERPIXEL, &spp); if (bps != 1 || spp != 1) G_THROW("Tiff image is not bitonal"); // photometric uint16 photo = PHOTOMETRIC_MINISWHITE; TIFFGetFieldDefaulted(tiff, TIFFTAG_PHOTOMETRIC, &photo); // image size uint32 w, h; if (!TIFFGetFieldDefaulted(tiff, TIFFTAG_IMAGEWIDTH, &w) || !TIFFGetFieldDefaulted(tiff, TIFFTAG_IMAGELENGTH, &h) ) G_THROW("Tiff image size is not defined"); // resolution float xres, yres; if (TIFFGetFieldDefaulted(tiff, TIFFTAG_XRESOLUTION, &xres) && TIFFGetFieldDefaulted(tiff, TIFFTAG_YRESOLUTION, &yres) ) { if (xres != yres) DjVuPrintErrorUTF8( "cjb2: X- and Y-resolution do not match\n"); if (! opts.forcedpi) opts.dpi = (int) (xres + yres) / 2; } // init rimg rimg.init(w, h, opts.dpi); // allocate scanline tsize_t scanlinesize = TIFFScanlineSize(tiff); scanlinesize = MAX(scanlinesize,1); unsigned char *scanline = 0; GPBuffer gscanline(scanline, scanlinesize); // iterate on rows for (int y=0; y<(int)h; y++) { int yy = h - y - 1; if (TIFFReadScanline(tiff, (tdata_t)scanline, y) < 0) G_THROW("Tiff file is corrupted (TIFFReadScanline)"); if (photo != PHOTOMETRIC_MINISWHITE) for (int i=0; i<(int)scanlinesize; i++) scanline[i] ^= 0xff; int lastx=0, off=0; unsigned char mask=0, c=0, b=0; for (int x=0; x<(int)w; x++) { if (! mask) { b = scanline[off++]; while (b==c && x+8<(int)w ) { x = x + 8; // speedup b = scanline[off++]; } mask = 0x80; } if ( (b ^ c) & mask ) { c ^= 0xff; if (c) lastx = x; else rimg.add_single_run(yy, lastx, x-1); } mask >>= 1; } if (c) rimg.add_single_run(yy, lastx, w-1); } // close TIFFClose(tiff); } #endif // HAVE_TIFF void cjb2(const GURL &urlin, const GURL &urlout, cjb2opts &opts) { GP ibs=ByteStream::create(urlin, "rb"); CCImage rimg; #if HAVE_TIFF if (is_tiff(ibs)) read_tiff(rimg, ibs, opts); else #endif { GP input=GBitmap::create(*ibs); rimg.init(input->columns(), input->rows(), opts.dpi); rimg.add_bitmap_runs(*input); } if (opts.verbose) DjVuFormatErrorUTF8( "%s\t%d", ERR_MSG("cjb2.runs"), rimg.runs.size() ); // Component analysis rimg.make_ccids_by_analysis(); // obtain ccids rimg.make_ccs_from_ccids(); // compute cc descriptors if (opts.verbose) DjVuFormatErrorUTF8( "%s\t%d", ERR_MSG("cjb2.ccs_before"), rimg.ccs.size()); if (opts.losslevel > 0) rimg.erase_tiny_ccs(); // clean rimg.merge_and_split_ccs(); // reorganize weird ccs rimg.sort_in_reading_order(); // sort cc descriptors if (opts.verbose) DjVuFormatErrorUTF8( "%s\t%d", ERR_MSG("cjb2.ccs_after"), rimg.ccs.size()); // Pattern matching GP jimg = rimg.get_jb2image(); // get ``raw'' jb2image rimg.runs.empty(); // save memory rimg.ccs.empty(); // save memory if (opts.losslevel>1) tune_jb2image_lossy(jimg, opts.dpi, opts.losslevel); else tune_jb2image_lossless(jimg); if (opts.verbose) { int nshape=0, nrefine=0; for (int i=0; iget_shape_count(); i++) { if (!jimg->get_shape(i).bits) continue; if (jimg->get_shape(i).parent >= 0) nrefine++; nshape++; } DjVuFormatErrorUTF8( "%s\t%d\t%d", ERR_MSG("cjb2.shapes"), nshape, nrefine); } // Code GP obs=ByteStream::create(urlout, "wb"); GP giff=IFFByteStream::create(obs); IFFByteStream &iff=*giff; // -- main composite chunk iff.put_chunk("FORM:DJVU", 1); // -- ``INFO'' chunk GP ginfo=DjVuInfo::create(); DjVuInfo &info=*ginfo; info.height = rimg.height; info.width = rimg.width; info.dpi = opts.dpi; iff.put_chunk("INFO"); info.encode(*iff.get_bytestream()); iff.close_chunk(); // -- ``Sjbz'' chunk iff.put_chunk("Sjbz"); jimg->encode(iff.get_bytestream()); iff.close_chunk(); // -- terminate main composite chunk iff.close_chunk(); // Finished! } // -------------------------------------------------- // MAIN // -------------------------------------------------- void usage() { DjVuPrintErrorUTF8( #ifdef DJVULIBRE_VERSION "CJB2 --- DjVuLibre-" DJVULIBRE_VERSION "\n" #endif "Simple DjVuBitonal encoder\n\n" "Usage: cjb2 [options] \n" "Options are:\n" " -verbose Display additional messages.\n" " -dpi Specify image resolution (default 300).\n" " -clean Cleanup image by removing small flyspecks.\n" " -lossy Lossy compression (implies -clean as well)\n" " -losslevel Loss factor (implies -lossy, default 100)\n" "Encoding is lossless unless a lossy options is selected.\n" ); exit(10); } int main(int argc, const char **argv) { DJVU_LOCALE; GArray dargv(0,argc-1); for(int i=0;i1200) usage(); } else if (arg == "-losslevel") { char *end; opts.losslevel = strtol(dargv[++i], &end, 10); if (*end || opts.losslevel<0 || opts.losslevel>200) usage(); } else if (arg == "-lossless") opts.losslevel = 0; else if (arg == "-lossy") opts.losslevel = 100; else if (arg == "-clean") // almost deprecated opts.losslevel = 1; else if (arg == "-verbose" || arg == "-v") opts.verbose = true; else if (arg[0] == '-' && arg[1]) usage(); else if (inputpbmurl.is_empty()) inputpbmurl = GURL::Filename::UTF8(arg); else if (outputdjvuurl.is_empty()) outputdjvuurl = GURL::Filename::UTF8(arg); else usage(); } if (inputpbmurl.is_empty() || outputdjvuurl.is_empty()) usage(); // Execute cjb2(inputpbmurl, outputdjvuurl, opts); } G_CATCH(ex) { ex.perror(); exit(1); } G_ENDCATCH; return 0; }