// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2015 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // sameeragarwal@google.com (Sameer Agarwal) #include "ceres/solver.h" #include #include // NOLINT #include #include "ceres/detect_structure.h" #include "ceres/gradient_checking_cost_function.h" #include "ceres/internal/port.h" #include "ceres/parameter_block_ordering.h" #include "ceres/preprocessor.h" #include "ceres/problem.h" #include "ceres/problem_impl.h" #include "ceres/program.h" #include "ceres/schur_templates.h" #include "ceres/solver_utils.h" #include "ceres/stringprintf.h" #include "ceres/types.h" #include "ceres/wall_time.h" namespace ceres { namespace { using std::map; using std::string; using std::vector; #define OPTION_OP(x, y, OP) \ if (!(options.x OP y)) { \ std::stringstream ss; \ ss << "Invalid configuration. "; \ ss << string("Solver::Options::" #x " = ") << options.x << ". "; \ ss << "Violated constraint: "; \ ss << string("Solver::Options::" #x " " #OP " "#y); \ *error = ss.str(); \ return false; \ } #define OPTION_OP_OPTION(x, y, OP) \ if (!(options.x OP options.y)) { \ std::stringstream ss; \ ss << "Invalid configuration. "; \ ss << string("Solver::Options::" #x " = ") << options.x << ". "; \ ss << string("Solver::Options::" #y " = ") << options.y << ". "; \ ss << "Violated constraint: "; \ ss << string("Solver::Options::" #x); \ ss << string(#OP " Solver::Options::" #y "."); \ *error = ss.str(); \ return false; \ } #define OPTION_GE(x, y) OPTION_OP(x, y, >=); #define OPTION_GT(x, y) OPTION_OP(x, y, >); #define OPTION_LE(x, y) OPTION_OP(x, y, <=); #define OPTION_LT(x, y) OPTION_OP(x, y, <); #define OPTION_LE_OPTION(x, y) OPTION_OP_OPTION(x, y, <=) #define OPTION_LT_OPTION(x, y) OPTION_OP_OPTION(x, y, <) bool CommonOptionsAreValid(const Solver::Options& options, string* error) { OPTION_GE(max_num_iterations, 0); OPTION_GE(max_solver_time_in_seconds, 0.0); OPTION_GE(function_tolerance, 0.0); OPTION_GE(gradient_tolerance, 0.0); OPTION_GE(parameter_tolerance, 0.0); OPTION_GT(num_threads, 0); OPTION_GT(num_linear_solver_threads, 0); if (options.check_gradients) { OPTION_GT(gradient_check_relative_precision, 0.0); OPTION_GT(gradient_check_numeric_derivative_relative_step_size, 0.0); } return true; } bool TrustRegionOptionsAreValid(const Solver::Options& options, string* error) { OPTION_GT(initial_trust_region_radius, 0.0); OPTION_GT(min_trust_region_radius, 0.0); OPTION_GT(max_trust_region_radius, 0.0); OPTION_LE_OPTION(min_trust_region_radius, max_trust_region_radius); OPTION_LE_OPTION(min_trust_region_radius, initial_trust_region_radius); OPTION_LE_OPTION(initial_trust_region_radius, max_trust_region_radius); OPTION_GE(min_relative_decrease, 0.0); OPTION_GE(min_lm_diagonal, 0.0); OPTION_GE(max_lm_diagonal, 0.0); OPTION_LE_OPTION(min_lm_diagonal, max_lm_diagonal); OPTION_GE(max_num_consecutive_invalid_steps, 0); OPTION_GT(eta, 0.0); OPTION_GE(min_linear_solver_iterations, 0); OPTION_GE(max_linear_solver_iterations, 1); OPTION_LE_OPTION(min_linear_solver_iterations, max_linear_solver_iterations); if (options.use_inner_iterations) { OPTION_GE(inner_iteration_tolerance, 0.0); } if (options.use_nonmonotonic_steps) { OPTION_GT(max_consecutive_nonmonotonic_steps, 0); } if (options.linear_solver_type == ITERATIVE_SCHUR && options.use_explicit_schur_complement && options.preconditioner_type != SCHUR_JACOBI) { *error = "use_explicit_schur_complement only supports " "SCHUR_JACOBI as the preconditioner."; return false; } if (options.preconditioner_type == CLUSTER_JACOBI && options.sparse_linear_algebra_library_type != SUITE_SPARSE) { *error = "CLUSTER_JACOBI requires " "Solver::Options::sparse_linear_algebra_library_type to be " "SUITE_SPARSE"; return false; } if (options.preconditioner_type == CLUSTER_TRIDIAGONAL && options.sparse_linear_algebra_library_type != SUITE_SPARSE) { *error = "CLUSTER_TRIDIAGONAL requires " "Solver::Options::sparse_linear_algebra_library_type to be " "SUITE_SPARSE"; return false; } #ifdef CERES_NO_LAPACK if (options.dense_linear_algebra_library_type == LAPACK) { if (options.linear_solver_type == DENSE_NORMAL_CHOLESKY) { *error = "Can't use DENSE_NORMAL_CHOLESKY with LAPACK because " "LAPACK was not enabled when Ceres was built."; return false; } else if (options.linear_solver_type == DENSE_QR) { *error = "Can't use DENSE_QR with LAPACK because " "LAPACK was not enabled when Ceres was built."; return false; } else if (options.linear_solver_type == DENSE_SCHUR) { *error = "Can't use DENSE_SCHUR with LAPACK because " "LAPACK was not enabled when Ceres was built."; return false; } } #endif #ifdef CERES_NO_SUITESPARSE if (options.sparse_linear_algebra_library_type == SUITE_SPARSE) { if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY) { *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because " "SuiteSparse was not enabled when Ceres was built."; return false; } else if (options.linear_solver_type == SPARSE_SCHUR) { *error = "Can't use SPARSE_SCHUR with SUITESPARSE because " "SuiteSparse was not enabled when Ceres was built."; return false; } else if (options.preconditioner_type == CLUSTER_JACOBI) { *error = "CLUSTER_JACOBI preconditioner not supported. " "SuiteSparse was not enabled when Ceres was built."; return false; } else if (options.preconditioner_type == CLUSTER_TRIDIAGONAL) { *error = "CLUSTER_TRIDIAGONAL preconditioner not supported. " "SuiteSparse was not enabled when Ceres was built."; return false; } } #endif #ifdef CERES_NO_CXSPARSE if (options.sparse_linear_algebra_library_type == CX_SPARSE) { if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY) { *error = "Can't use SPARSE_NORMAL_CHOLESKY with CX_SPARSE because " "CXSparse was not enabled when Ceres was built."; return false; } else if (options.linear_solver_type == SPARSE_SCHUR) { *error = "Can't use SPARSE_SCHUR with CX_SPARSE because " "CXSparse was not enabled when Ceres was built."; return false; } } #endif #ifndef CERES_USE_EIGEN_SPARSE if (options.sparse_linear_algebra_library_type == EIGEN_SPARSE) { if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY) { *error = "Can't use SPARSE_NORMAL_CHOLESKY with EIGEN_SPARSE because " "Eigen's sparse linear algebra was not enabled when Ceres was " "built."; return false; } else if (options.linear_solver_type == SPARSE_SCHUR) { *error = "Can't use SPARSE_SCHUR with EIGEN_SPARSE because " "Eigen's sparse linear algebra was not enabled when Ceres was " "built."; return false; } } #endif if (options.sparse_linear_algebra_library_type == NO_SPARSE) { if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY) { *error = "Can't use SPARSE_NORMAL_CHOLESKY as " "sparse_linear_algebra_library_type is NO_SPARSE."; return false; } else if (options.linear_solver_type == SPARSE_SCHUR) { *error = "Can't use SPARSE_SCHUR as " "sparse_linear_algebra_library_type is NO_SPARSE."; return false; } } if (options.trust_region_strategy_type == DOGLEG) { if (options.linear_solver_type == ITERATIVE_SCHUR || options.linear_solver_type == CGNR) { *error = "DOGLEG only supports exact factorization based linear " "solvers. If you want to use an iterative solver please " "use LEVENBERG_MARQUARDT as the trust_region_strategy_type"; return false; } } if (options.trust_region_minimizer_iterations_to_dump.size() > 0 && options.trust_region_problem_dump_format_type != CONSOLE && options.trust_region_problem_dump_directory.empty()) { *error = "Solver::Options::trust_region_problem_dump_directory is empty."; return false; } if (options.dynamic_sparsity && options.linear_solver_type != SPARSE_NORMAL_CHOLESKY) { *error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY."; return false; } return true; } bool LineSearchOptionsAreValid(const Solver::Options& options, string* error) { OPTION_GT(max_lbfgs_rank, 0); OPTION_GT(min_line_search_step_size, 0.0); OPTION_GT(max_line_search_step_contraction, 0.0); OPTION_LT(max_line_search_step_contraction, 1.0); OPTION_LT_OPTION(max_line_search_step_contraction, min_line_search_step_contraction); OPTION_LE(min_line_search_step_contraction, 1.0); OPTION_GT(max_num_line_search_step_size_iterations, 0); OPTION_GT(line_search_sufficient_function_decrease, 0.0); OPTION_LT_OPTION(line_search_sufficient_function_decrease, line_search_sufficient_curvature_decrease); OPTION_LT(line_search_sufficient_curvature_decrease, 1.0); OPTION_GT(max_line_search_step_expansion, 1.0); if ((options.line_search_direction_type == ceres::BFGS || options.line_search_direction_type == ceres::LBFGS) && options.line_search_type != ceres::WOLFE) { *error = string("Invalid configuration: Solver::Options::line_search_type = ") + string(LineSearchTypeToString(options.line_search_type)) + string(". When using (L)BFGS, " "Solver::Options::line_search_type must be set to WOLFE."); return false; } // Warn user if they have requested BISECTION interpolation, but constraints // on max/min step size change during line search prevent bisection scaling // from occurring. Warn only, as this is likely a user mistake, but one which // does not prevent us from continuing. LOG_IF(WARNING, (options.line_search_interpolation_type == ceres::BISECTION && (options.max_line_search_step_contraction > 0.5 || options.min_line_search_step_contraction < 0.5))) << "Line search interpolation type is BISECTION, but specified " << "max_line_search_step_contraction: " << options.max_line_search_step_contraction << ", and " << "min_line_search_step_contraction: " << options.min_line_search_step_contraction << ", prevent bisection (0.5) scaling, continuing with solve regardless."; return true; } #undef OPTION_OP #undef OPTION_OP_OPTION #undef OPTION_GT #undef OPTION_GE #undef OPTION_LE #undef OPTION_LT #undef OPTION_LE_OPTION #undef OPTION_LT_OPTION void StringifyOrdering(const vector& ordering, string* report) { if (ordering.size() == 0) { internal::StringAppendF(report, "AUTOMATIC"); return; } for (int i = 0; i < ordering.size() - 1; ++i) { internal::StringAppendF(report, "%d,", ordering[i]); } internal::StringAppendF(report, "%d", ordering.back()); } void SummarizeGivenProgram(const internal::Program& program, Solver::Summary* summary) { summary->num_parameter_blocks = program.NumParameterBlocks(); summary->num_parameters = program.NumParameters(); summary->num_effective_parameters = program.NumEffectiveParameters(); summary->num_residual_blocks = program.NumResidualBlocks(); summary->num_residuals = program.NumResiduals(); } void SummarizeReducedProgram(const internal::Program& program, Solver::Summary* summary) { summary->num_parameter_blocks_reduced = program.NumParameterBlocks(); summary->num_parameters_reduced = program.NumParameters(); summary->num_effective_parameters_reduced = program.NumEffectiveParameters(); summary->num_residual_blocks_reduced = program.NumResidualBlocks(); summary->num_residuals_reduced = program.NumResiduals(); } void PreSolveSummarize(const Solver::Options& options, const internal::ProblemImpl* problem, Solver::Summary* summary) { SummarizeGivenProgram(problem->program(), summary); internal::OrderingToGroupSizes(options.linear_solver_ordering.get(), &(summary->linear_solver_ordering_given)); internal::OrderingToGroupSizes(options.inner_iteration_ordering.get(), &(summary->inner_iteration_ordering_given)); summary->dense_linear_algebra_library_type = options.dense_linear_algebra_library_type; // NOLINT summary->dogleg_type = options.dogleg_type; summary->inner_iteration_time_in_seconds = 0.0; summary->num_line_search_steps = 0; summary->line_search_cost_evaluation_time_in_seconds = 0.0; summary->line_search_gradient_evaluation_time_in_seconds = 0.0; summary->line_search_polynomial_minimization_time_in_seconds = 0.0; summary->line_search_total_time_in_seconds = 0.0; summary->inner_iterations_given = options.use_inner_iterations; summary->line_search_direction_type = options.line_search_direction_type; // NOLINT summary->line_search_interpolation_type = options.line_search_interpolation_type; // NOLINT summary->line_search_type = options.line_search_type; summary->linear_solver_type_given = options.linear_solver_type; summary->max_lbfgs_rank = options.max_lbfgs_rank; summary->minimizer_type = options.minimizer_type; summary->nonlinear_conjugate_gradient_type = options.nonlinear_conjugate_gradient_type; // NOLINT summary->num_linear_solver_threads_given = options.num_linear_solver_threads; // NOLINT summary->num_threads_given = options.num_threads; summary->preconditioner_type_given = options.preconditioner_type; summary->sparse_linear_algebra_library_type = options.sparse_linear_algebra_library_type; // NOLINT summary->trust_region_strategy_type = options.trust_region_strategy_type; // NOLINT summary->visibility_clustering_type = options.visibility_clustering_type; // NOLINT } void PostSolveSummarize(const internal::PreprocessedProblem& pp, Solver::Summary* summary) { internal::OrderingToGroupSizes(pp.options.linear_solver_ordering.get(), &(summary->linear_solver_ordering_used)); internal::OrderingToGroupSizes(pp.options.inner_iteration_ordering.get(), &(summary->inner_iteration_ordering_used)); summary->inner_iterations_used = pp.inner_iteration_minimizer.get() != NULL; // NOLINT summary->linear_solver_type_used = pp.linear_solver_options.type; summary->num_linear_solver_threads_used = pp.options.num_linear_solver_threads; // NOLINT summary->num_threads_used = pp.options.num_threads; summary->preconditioner_type_used = pp.options.preconditioner_type; // NOLINT internal::SetSummaryFinalCost(summary); if (pp.reduced_program.get() != NULL) { SummarizeReducedProgram(*pp.reduced_program, summary); } // It is possible that no evaluator was created. This would be the // case if the preprocessor failed, or if the reduced problem did // not contain any parameter blocks. Thus, only extract the // evaluator statistics if one exists. if (pp.evaluator.get() != NULL) { const map& evaluator_time_statistics = pp.evaluator->TimeStatistics(); summary->residual_evaluation_time_in_seconds = FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0); summary->jacobian_evaluation_time_in_seconds = FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0); } // Again, like the evaluator, there may or may not be a linear // solver from which we can extract run time statistics. In // particular the line search solver does not use a linear solver. if (pp.linear_solver.get() != NULL) { const map& linear_solver_time_statistics = pp.linear_solver->TimeStatistics(); summary->linear_solver_time_in_seconds = FindWithDefault(linear_solver_time_statistics, "LinearSolver::Solve", 0.0); } } void Minimize(internal::PreprocessedProblem* pp, Solver::Summary* summary) { using internal::Program; using internal::scoped_ptr; using internal::Minimizer; Program* program = pp->reduced_program.get(); if (pp->reduced_program->NumParameterBlocks() == 0) { summary->message = "Function tolerance reached. " "No non-constant parameter blocks found."; summary->termination_type = CONVERGENCE; VLOG_IF(1, pp->options.logging_type != SILENT) << summary->message; summary->initial_cost = summary->fixed_cost; summary->final_cost = summary->fixed_cost; return; } scoped_ptr minimizer( Minimizer::Create(pp->options.minimizer_type)); minimizer->Minimize(pp->minimizer_options, pp->reduced_parameters.data(), summary); if (summary->IsSolutionUsable()) { program->StateVectorToParameterBlocks(pp->reduced_parameters.data()); program->CopyParameterBlockStateToUserState(); } } std::string SchurStructureToString(const int row_block_size, const int e_block_size, const int f_block_size) { const std::string row = (row_block_size == Eigen::Dynamic) ? "d" : internal::StringPrintf("%d", row_block_size); const std::string e = (e_block_size == Eigen::Dynamic) ? "d" : internal::StringPrintf("%d", e_block_size); const std::string f = (f_block_size == Eigen::Dynamic) ? "d" : internal::StringPrintf("%d", f_block_size); return internal::StringPrintf("%s,%s,%s", row.c_str(), e.c_str(), f.c_str()); } } // namespace bool Solver::Options::IsValid(string* error) const { if (!CommonOptionsAreValid(*this, error)) { return false; } if (minimizer_type == TRUST_REGION && !TrustRegionOptionsAreValid(*this, error)) { return false; } // We do not know if the problem is bounds constrained or not, if it // is then the trust region solver will also use the line search // solver to do a projection onto the box constraints, so make sure // that the line search options are checked independent of what // minimizer algorithm is being used. return LineSearchOptionsAreValid(*this, error); } Solver::~Solver() {} void Solver::Solve(const Solver::Options& options, Problem* problem, Solver::Summary* summary) { using internal::PreprocessedProblem; using internal::Preprocessor; using internal::ProblemImpl; using internal::Program; using internal::scoped_ptr; using internal::WallTimeInSeconds; CHECK_NOTNULL(problem); CHECK_NOTNULL(summary); double start_time = WallTimeInSeconds(); *summary = Summary(); if (!options.IsValid(&summary->message)) { LOG(ERROR) << "Terminating: " << summary->message; return; } ProblemImpl* problem_impl = problem->problem_impl_.get(); Program* program = problem_impl->mutable_program(); PreSolveSummarize(options, problem_impl, summary); // Make sure that all the parameter blocks states are set to the // values provided by the user. program->SetParameterBlockStatePtrsToUserStatePtrs(); // If gradient_checking is enabled, wrap all cost functions in a // gradient checker and install a callback that terminates if any gradient // error is detected. scoped_ptr gradient_checking_problem; internal::GradientCheckingIterationCallback gradient_checking_callback; Solver::Options modified_options = options; if (options.check_gradients) { modified_options.callbacks.push_back(&gradient_checking_callback); gradient_checking_problem.reset( CreateGradientCheckingProblemImpl( problem_impl, options.gradient_check_numeric_derivative_relative_step_size, options.gradient_check_relative_precision, &gradient_checking_callback)); problem_impl = gradient_checking_problem.get(); program = problem_impl->mutable_program(); } scoped_ptr preprocessor( Preprocessor::Create(modified_options.minimizer_type)); PreprocessedProblem pp; const bool status = preprocessor->Preprocess(modified_options, problem_impl, &pp); // We check the linear_solver_options.type rather than // modified_options.linear_solver_type because, depending on the // lack of a Schur structure, the preprocessor may change the linear // solver type. if (IsSchurType(pp.linear_solver_options.type)) { // TODO(sameeragarwal): We can likely eliminate the duplicate call // to DetectStructure here and inside the linear solver, by // calling this in the preprocessor. int row_block_size; int e_block_size; int f_block_size; DetectStructure(*static_cast( pp.minimizer_options.jacobian.get()) ->block_structure(), pp.linear_solver_options.elimination_groups[0], &row_block_size, &e_block_size, &f_block_size); summary->schur_structure_given = SchurStructureToString(row_block_size, e_block_size, f_block_size); internal::GetBestSchurTemplateSpecialization(&row_block_size, &e_block_size, &f_block_size); summary->schur_structure_used = SchurStructureToString(row_block_size, e_block_size, f_block_size); } summary->fixed_cost = pp.fixed_cost; summary->preprocessor_time_in_seconds = WallTimeInSeconds() - start_time; if (status) { const double minimizer_start_time = WallTimeInSeconds(); Minimize(&pp, summary); summary->minimizer_time_in_seconds = WallTimeInSeconds() - minimizer_start_time; } else { summary->message = pp.error; } const double postprocessor_start_time = WallTimeInSeconds(); problem_impl = problem->problem_impl_.get(); program = problem_impl->mutable_program(); // On exit, ensure that the parameter blocks again point at the user // provided values and the parameter blocks are numbered according // to their position in the original user provided program. program->SetParameterBlockStatePtrsToUserStatePtrs(); program->SetParameterOffsetsAndIndex(); PostSolveSummarize(pp, summary); summary->postprocessor_time_in_seconds = WallTimeInSeconds() - postprocessor_start_time; // If the gradient checker reported an error, we want to report FAILURE // instead of USER_FAILURE and provide the error log. if (gradient_checking_callback.gradient_error_detected()) { summary->termination_type = FAILURE; summary->message = gradient_checking_callback.error_log(); } summary->total_time_in_seconds = WallTimeInSeconds() - start_time; } void Solve(const Solver::Options& options, Problem* problem, Solver::Summary* summary) { Solver solver; solver.Solve(options, problem, summary); } Solver::Summary::Summary() // Invalid values for most fields, to ensure that we are not // accidentally reporting default values. : minimizer_type(TRUST_REGION), termination_type(FAILURE), message("ceres::Solve was not called."), initial_cost(-1.0), final_cost(-1.0), fixed_cost(-1.0), num_successful_steps(-1), num_unsuccessful_steps(-1), num_inner_iteration_steps(-1), num_line_search_steps(-1), preprocessor_time_in_seconds(-1.0), minimizer_time_in_seconds(-1.0), postprocessor_time_in_seconds(-1.0), total_time_in_seconds(-1.0), linear_solver_time_in_seconds(-1.0), residual_evaluation_time_in_seconds(-1.0), jacobian_evaluation_time_in_seconds(-1.0), inner_iteration_time_in_seconds(-1.0), line_search_cost_evaluation_time_in_seconds(-1.0), line_search_gradient_evaluation_time_in_seconds(-1.0), line_search_polynomial_minimization_time_in_seconds(-1.0), line_search_total_time_in_seconds(-1.0), num_parameter_blocks(-1), num_parameters(-1), num_effective_parameters(-1), num_residual_blocks(-1), num_residuals(-1), num_parameter_blocks_reduced(-1), num_parameters_reduced(-1), num_effective_parameters_reduced(-1), num_residual_blocks_reduced(-1), num_residuals_reduced(-1), is_constrained(false), num_threads_given(-1), num_threads_used(-1), num_linear_solver_threads_given(-1), num_linear_solver_threads_used(-1), linear_solver_type_given(SPARSE_NORMAL_CHOLESKY), linear_solver_type_used(SPARSE_NORMAL_CHOLESKY), inner_iterations_given(false), inner_iterations_used(false), preconditioner_type_given(IDENTITY), preconditioner_type_used(IDENTITY), visibility_clustering_type(CANONICAL_VIEWS), trust_region_strategy_type(LEVENBERG_MARQUARDT), dense_linear_algebra_library_type(EIGEN), sparse_linear_algebra_library_type(SUITE_SPARSE), line_search_direction_type(LBFGS), line_search_type(ARMIJO), line_search_interpolation_type(BISECTION), nonlinear_conjugate_gradient_type(FLETCHER_REEVES), max_lbfgs_rank(-1) { } using internal::StringAppendF; using internal::StringPrintf; string Solver::Summary::BriefReport() const { return StringPrintf("Ceres Solver Report: " "Iterations: %d, " "Initial cost: %e, " "Final cost: %e, " "Termination: %s", num_successful_steps + num_unsuccessful_steps, initial_cost, final_cost, TerminationTypeToString(termination_type)); } string Solver::Summary::FullReport() const { using internal::VersionString; string report = string("\nSolver Summary (v " + VersionString() + ")\n\n"); StringAppendF(&report, "%45s %21s\n", "Original", "Reduced"); StringAppendF(&report, "Parameter blocks % 25d% 25d\n", num_parameter_blocks, num_parameter_blocks_reduced); StringAppendF(&report, "Parameters % 25d% 25d\n", num_parameters, num_parameters_reduced); if (num_effective_parameters_reduced != num_parameters_reduced) { StringAppendF(&report, "Effective parameters% 25d% 25d\n", num_effective_parameters, num_effective_parameters_reduced); } StringAppendF(&report, "Residual blocks % 25d% 25d\n", num_residual_blocks, num_residual_blocks_reduced); StringAppendF(&report, "Residual % 25d% 25d\n", num_residuals, num_residuals_reduced); if (minimizer_type == TRUST_REGION) { // TRUST_SEARCH HEADER StringAppendF(&report, "\nMinimizer %19s\n", "TRUST_REGION"); if (linear_solver_type_used == DENSE_NORMAL_CHOLESKY || linear_solver_type_used == DENSE_SCHUR || linear_solver_type_used == DENSE_QR) { StringAppendF(&report, "\nDense linear algebra library %15s\n", DenseLinearAlgebraLibraryTypeToString( dense_linear_algebra_library_type)); } if (linear_solver_type_used == SPARSE_NORMAL_CHOLESKY || linear_solver_type_used == SPARSE_SCHUR || (linear_solver_type_used == ITERATIVE_SCHUR && (preconditioner_type_used == CLUSTER_JACOBI || preconditioner_type_used == CLUSTER_TRIDIAGONAL))) { StringAppendF(&report, "\nSparse linear algebra library %15s\n", SparseLinearAlgebraLibraryTypeToString( sparse_linear_algebra_library_type)); } StringAppendF(&report, "Trust region strategy %19s", TrustRegionStrategyTypeToString( trust_region_strategy_type)); if (trust_region_strategy_type == DOGLEG) { if (dogleg_type == TRADITIONAL_DOGLEG) { StringAppendF(&report, " (TRADITIONAL)"); } else { StringAppendF(&report, " (SUBSPACE)"); } } StringAppendF(&report, "\n"); StringAppendF(&report, "\n"); StringAppendF(&report, "%45s %21s\n", "Given", "Used"); StringAppendF(&report, "Linear solver %25s%25s\n", LinearSolverTypeToString(linear_solver_type_given), LinearSolverTypeToString(linear_solver_type_used)); if (linear_solver_type_given == CGNR || linear_solver_type_given == ITERATIVE_SCHUR) { StringAppendF(&report, "Preconditioner %25s%25s\n", PreconditionerTypeToString(preconditioner_type_given), PreconditionerTypeToString(preconditioner_type_used)); } if (preconditioner_type_used == CLUSTER_JACOBI || preconditioner_type_used == CLUSTER_TRIDIAGONAL) { StringAppendF(&report, "Visibility clustering%24s%25s\n", VisibilityClusteringTypeToString( visibility_clustering_type), VisibilityClusteringTypeToString( visibility_clustering_type)); } StringAppendF(&report, "Threads % 25d% 25d\n", num_threads_given, num_threads_used); StringAppendF(&report, "Linear solver threads % 23d% 25d\n", num_linear_solver_threads_given, num_linear_solver_threads_used); string given; StringifyOrdering(linear_solver_ordering_given, &given); string used; StringifyOrdering(linear_solver_ordering_used, &used); StringAppendF(&report, "Linear solver ordering %22s %24s\n", given.c_str(), used.c_str()); if (IsSchurType(linear_solver_type_used)) { StringAppendF(&report, "Schur structure %22s %24s\n", schur_structure_given.c_str(), schur_structure_used.c_str()); } if (inner_iterations_given) { StringAppendF(&report, "Use inner iterations %20s %20s\n", inner_iterations_given ? "True" : "False", inner_iterations_used ? "True" : "False"); } if (inner_iterations_used) { string given; StringifyOrdering(inner_iteration_ordering_given, &given); string used; StringifyOrdering(inner_iteration_ordering_used, &used); StringAppendF(&report, "Inner iteration ordering %20s %24s\n", given.c_str(), used.c_str()); } } else { // LINE_SEARCH HEADER StringAppendF(&report, "\nMinimizer %19s\n", "LINE_SEARCH"); string line_search_direction_string; if (line_search_direction_type == LBFGS) { line_search_direction_string = StringPrintf("LBFGS (%d)", max_lbfgs_rank); } else if (line_search_direction_type == NONLINEAR_CONJUGATE_GRADIENT) { line_search_direction_string = NonlinearConjugateGradientTypeToString( nonlinear_conjugate_gradient_type); } else { line_search_direction_string = LineSearchDirectionTypeToString(line_search_direction_type); } StringAppendF(&report, "Line search direction %19s\n", line_search_direction_string.c_str()); const string line_search_type_string = StringPrintf("%s %s", LineSearchInterpolationTypeToString( line_search_interpolation_type), LineSearchTypeToString(line_search_type)); StringAppendF(&report, "Line search type %19s\n", line_search_type_string.c_str()); StringAppendF(&report, "\n"); StringAppendF(&report, "%45s %21s\n", "Given", "Used"); StringAppendF(&report, "Threads % 25d% 25d\n", num_threads_given, num_threads_used); } StringAppendF(&report, "\nCost:\n"); StringAppendF(&report, "Initial % 30e\n", initial_cost); if (termination_type != FAILURE && termination_type != USER_FAILURE) { StringAppendF(&report, "Final % 30e\n", final_cost); StringAppendF(&report, "Change % 30e\n", initial_cost - final_cost); } StringAppendF(&report, "\nMinimizer iterations % 16d\n", num_successful_steps + num_unsuccessful_steps); // Successful/Unsuccessful steps only matter in the case of the // trust region solver. Line search terminates when it encounters // the first unsuccessful step. if (minimizer_type == TRUST_REGION) { StringAppendF(&report, "Successful steps % 14d\n", num_successful_steps); StringAppendF(&report, "Unsuccessful steps % 14d\n", num_unsuccessful_steps); } if (inner_iterations_used) { StringAppendF(&report, "Steps with inner iterations % 14d\n", num_inner_iteration_steps); } const bool line_search_used = (minimizer_type == LINE_SEARCH || (minimizer_type == TRUST_REGION && is_constrained)); if (line_search_used) { StringAppendF(&report, "Line search steps % 14d\n", num_line_search_steps); } StringAppendF(&report, "\nTime (in seconds):\n"); StringAppendF(&report, "Preprocessor %25.4f\n", preprocessor_time_in_seconds); StringAppendF(&report, "\n Residual evaluation %23.4f\n", residual_evaluation_time_in_seconds); if (line_search_used) { StringAppendF(&report, " Line search cost evaluation %10.4f\n", line_search_cost_evaluation_time_in_seconds); } StringAppendF(&report, " Jacobian evaluation %23.4f\n", jacobian_evaluation_time_in_seconds); if (line_search_used) { StringAppendF(&report, " Line search gradient evaluation %6.4f\n", line_search_gradient_evaluation_time_in_seconds); } if (minimizer_type == TRUST_REGION) { StringAppendF(&report, " Linear solver %23.4f\n", linear_solver_time_in_seconds); } if (inner_iterations_used) { StringAppendF(&report, " Inner iterations %23.4f\n", inner_iteration_time_in_seconds); } if (line_search_used) { StringAppendF(&report, " Line search polynomial minimization %.4f\n", line_search_polynomial_minimization_time_in_seconds); } StringAppendF(&report, "Minimizer %25.4f\n\n", minimizer_time_in_seconds); StringAppendF(&report, "Postprocessor %24.4f\n", postprocessor_time_in_seconds); StringAppendF(&report, "Total %25.4f\n\n", total_time_in_seconds); StringAppendF(&report, "Termination: %25s (%s)\n", TerminationTypeToString(termination_type), message.c_str()); return report; } bool Solver::Summary::IsSolutionUsable() const { return internal::IsSolutionUsable(*this); } } // namespace ceres