Blame internal/ceres/trust_region_minimizer.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2016 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
Packit ea1746
#include "ceres/trust_region_minimizer.h"
Packit ea1746
Packit ea1746
#include <algorithm>
Packit ea1746
#include <cmath>
Packit ea1746
#include <cstdlib>
Packit ea1746
#include <cstring>
Packit ea1746
#include <limits>
Packit ea1746
#include <string>
Packit ea1746
#include <vector>
Packit ea1746
Packit ea1746
#include "Eigen/Core"
Packit ea1746
#include "ceres/array_utils.h"
Packit ea1746
#include "ceres/coordinate_descent_minimizer.h"
Packit ea1746
#include "ceres/evaluator.h"
Packit ea1746
#include "ceres/file.h"
Packit ea1746
#include "ceres/line_search.h"
Packit ea1746
#include "ceres/stringprintf.h"
Packit ea1746
#include "ceres/types.h"
Packit ea1746
#include "ceres/wall_time.h"
Packit ea1746
#include "glog/logging.h"
Packit ea1746
Packit ea1746
// Helper macro to simplify some of the control flow.
Packit ea1746
#define RETURN_IF_ERROR_AND_LOG(expr)                            \
Packit ea1746
  do {                                                           \
Packit ea1746
    if (!(expr)) {                                               \
Packit ea1746
      LOG(ERROR) << "Terminating: " << solver_summary_->message; \
Packit ea1746
      return;                                                    \
Packit ea1746
    }                                                            \
Packit ea1746
  } while (0)
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
TrustRegionMinimizer::~TrustRegionMinimizer() {}
Packit ea1746
Packit ea1746
void TrustRegionMinimizer::Minimize(const Minimizer::Options& options,
Packit ea1746
                                    double* parameters,
Packit ea1746
                                    Solver::Summary* solver_summary) {
Packit ea1746
  start_time_in_secs_ = WallTimeInSeconds();
Packit ea1746
  iteration_start_time_in_secs_ = start_time_in_secs_;
Packit ea1746
  Init(options, parameters, solver_summary);
Packit ea1746
  RETURN_IF_ERROR_AND_LOG(IterationZero());
Packit ea1746
Packit ea1746
  // Create the TrustRegionStepEvaluator. The construction needs to be
Packit ea1746
  // delayed to this point because we need the cost for the starting
Packit ea1746
  // point to initialize the step evaluator.
Packit ea1746
  step_evaluator_.reset(new TrustRegionStepEvaluator(
Packit ea1746
      x_cost_,
Packit ea1746
      options_.use_nonmonotonic_steps
Packit ea1746
          ? options_.max_consecutive_nonmonotonic_steps
Packit ea1746
          : 0));
Packit ea1746
Packit ea1746
  while (FinalizeIterationAndCheckIfMinimizerCanContinue()) {
Packit ea1746
    iteration_start_time_in_secs_ = WallTimeInSeconds();
Packit ea1746
    iteration_summary_ = IterationSummary();
Packit ea1746
    iteration_summary_.iteration =
Packit ea1746
        solver_summary->iterations.back().iteration + 1;
Packit ea1746
Packit ea1746
    RETURN_IF_ERROR_AND_LOG(ComputeTrustRegionStep());
Packit ea1746
    if (!iteration_summary_.step_is_valid) {
Packit ea1746
      RETURN_IF_ERROR_AND_LOG(HandleInvalidStep());
Packit ea1746
      continue;
Packit ea1746
    }
Packit ea1746
Packit ea1746
    if (options_.is_constrained) {
Packit ea1746
      // Use a projected line search to enforce the bounds constraints
Packit ea1746
      // and improve the quality of the step.
Packit ea1746
      DoLineSearch(x_, gradient_, x_cost_, &delta_;;
Packit ea1746
    }
Packit ea1746
Packit ea1746
    ComputeCandidatePointAndEvaluateCost();
Packit ea1746
    DoInnerIterationsIfNeeded();
Packit ea1746
Packit ea1746
    if (ParameterToleranceReached()) {
Packit ea1746
      return;
Packit ea1746
    }
Packit ea1746
Packit ea1746
    if (FunctionToleranceReached()) {
Packit ea1746
      return;
Packit ea1746
    }
Packit ea1746
Packit ea1746
    if (IsStepSuccessful()) {
Packit ea1746
      RETURN_IF_ERROR_AND_LOG(HandleSuccessfulStep());
Packit ea1746
      continue;
Packit ea1746
    }
Packit ea1746
Packit ea1746
    HandleUnsuccessfulStep();
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
// Initialize the minimizer, allocate working space and set some of
Packit ea1746
// the fields in the solver_summary.
Packit ea1746
void TrustRegionMinimizer::Init(const Minimizer::Options& options,
Packit ea1746
                                double* parameters,
Packit ea1746
                                Solver::Summary* solver_summary) {
Packit ea1746
  options_ = options;
Packit ea1746
  sort(options_.trust_region_minimizer_iterations_to_dump.begin(),
Packit ea1746
       options_.trust_region_minimizer_iterations_to_dump.end());
Packit ea1746
Packit ea1746
  parameters_ = parameters;
Packit ea1746
Packit ea1746
  solver_summary_ = solver_summary;
Packit ea1746
  solver_summary_->termination_type = NO_CONVERGENCE;
Packit ea1746
  solver_summary_->num_successful_steps = 0;
Packit ea1746
  solver_summary_->num_unsuccessful_steps = 0;
Packit ea1746
  solver_summary_->is_constrained = options.is_constrained;
Packit ea1746
Packit ea1746
  evaluator_ = CHECK_NOTNULL(options_.evaluator.get());
Packit ea1746
  jacobian_ = CHECK_NOTNULL(options_.jacobian.get());
Packit ea1746
  strategy_ = CHECK_NOTNULL(options_.trust_region_strategy.get());
Packit ea1746
Packit ea1746
  is_not_silent_ = !options.is_silent;
Packit ea1746
  inner_iterations_are_enabled_ =
Packit ea1746
      options.inner_iteration_minimizer.get() != NULL;
Packit ea1746
  inner_iterations_were_useful_ = false;
Packit ea1746
Packit ea1746
  num_parameters_ = evaluator_->NumParameters();
Packit ea1746
  num_effective_parameters_ = evaluator_->NumEffectiveParameters();
Packit ea1746
  num_residuals_ = evaluator_->NumResiduals();
Packit ea1746
  num_consecutive_invalid_steps_ = 0;
Packit ea1746
Packit ea1746
  x_ = ConstVectorRef(parameters_, num_parameters_);
Packit ea1746
  x_norm_ = x_.norm();
Packit ea1746
  residuals_.resize(num_residuals_);
Packit ea1746
  trust_region_step_.resize(num_effective_parameters_);
Packit ea1746
  delta_.resize(num_effective_parameters_);
Packit ea1746
  candidate_x_.resize(num_parameters_);
Packit ea1746
  gradient_.resize(num_effective_parameters_);
Packit ea1746
  model_residuals_.resize(num_residuals_);
Packit ea1746
  negative_gradient_.resize(num_effective_parameters_);
Packit ea1746
  projected_gradient_step_.resize(num_parameters_);
Packit ea1746
Packit ea1746
  // By default scaling is one, if the user requests Jacobi scaling of
Packit ea1746
  // the Jacobian, we will compute and overwrite this vector.
Packit ea1746
  jacobian_scaling_ = Vector::Ones(num_effective_parameters_);
Packit ea1746
Packit ea1746
  x_norm_ = -1;  // Invalid value
Packit ea1746
  x_cost_ = std::numeric_limits<double>::max();
Packit ea1746
  minimum_cost_ = x_cost_;
Packit ea1746
  model_cost_change_ = 0.0;
Packit ea1746
}
Packit ea1746
Packit ea1746
// 1. Project the initial solution onto the feasible set if needed.
Packit ea1746
// 2. Compute the initial cost, jacobian & gradient.
Packit ea1746
//
Packit ea1746
// Return true if all computations can be performed successfully.
Packit ea1746
bool TrustRegionMinimizer::IterationZero() {
Packit ea1746
  iteration_summary_ = IterationSummary();
Packit ea1746
  iteration_summary_.iteration = 0;
Packit ea1746
  iteration_summary_.step_is_valid = false;
Packit ea1746
  iteration_summary_.step_is_successful = false;
Packit ea1746
  iteration_summary_.cost_change = 0.0;
Packit ea1746
  iteration_summary_.gradient_max_norm = 0.0;
Packit ea1746
  iteration_summary_.gradient_norm = 0.0;
Packit ea1746
  iteration_summary_.step_norm = 0.0;
Packit ea1746
  iteration_summary_.relative_decrease = 0.0;
Packit ea1746
  iteration_summary_.eta = options_.eta;
Packit ea1746
  iteration_summary_.linear_solver_iterations = 0;
Packit ea1746
  iteration_summary_.step_solver_time_in_seconds = 0;
Packit ea1746
Packit ea1746
  if (options_.is_constrained) {
Packit ea1746
    delta_.setZero();
Packit ea1746
    if (!evaluator_->Plus(x_.data(), delta_.data(), candidate_x_.data())) {
Packit ea1746
      solver_summary_->message =
Packit ea1746
          "Unable to project initial point onto the feasible set.";
Packit ea1746
      solver_summary_->termination_type = FAILURE;
Packit ea1746
      return false;
Packit ea1746
    }
Packit ea1746
Packit ea1746
    x_ = candidate_x_;
Packit ea1746
    x_norm_ = x_.norm();
Packit ea1746
  }
Packit ea1746
Packit ea1746
  if (!EvaluateGradientAndJacobian()) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  solver_summary_->initial_cost = x_cost_ + solver_summary_->fixed_cost;
Packit ea1746
  iteration_summary_.step_is_valid = true;
Packit ea1746
  iteration_summary_.step_is_successful = true;
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// For the current x_, compute
Packit ea1746
//
Packit ea1746
//  1. Cost
Packit ea1746
//  2. Jacobian
Packit ea1746
//  3. Gradient
Packit ea1746
//  4. Scale the Jacobian if needed (and compute the scaling if we are
Packit ea1746
//     in iteration zero).
Packit ea1746
//  5. Compute the 2 and max norm of the gradient.
Packit ea1746
//
Packit ea1746
// Returns true if all computations could be performed
Packit ea1746
// successfully. Any failures are considered fatal and the
Packit ea1746
// Solver::Summary is updated to indicate this.
Packit ea1746
bool TrustRegionMinimizer::EvaluateGradientAndJacobian() {
Packit ea1746
  if (!evaluator_->Evaluate(x_.data(),
Packit ea1746
                            &x_cost_,
Packit ea1746
                            residuals_.data(),
Packit ea1746
                            gradient_.data(),
Packit ea1746
                            jacobian_)) {
Packit ea1746
    solver_summary_->message = "Residual and Jacobian evaluation failed.";
Packit ea1746
    solver_summary_->termination_type = FAILURE;
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  iteration_summary_.cost = x_cost_ + solver_summary_->fixed_cost;
Packit ea1746
Packit ea1746
  if (options_.jacobi_scaling) {
Packit ea1746
    if (iteration_summary_.iteration == 0) {
Packit ea1746
      // Compute a scaling vector that is used to improve the
Packit ea1746
      // conditioning of the Jacobian.
Packit ea1746
      //
Packit ea1746
      // jacobian_scaling_ = diag(J'J)^{-1}
Packit ea1746
      jacobian_->SquaredColumnNorm(jacobian_scaling_.data());
Packit ea1746
      for (int i = 0; i < jacobian_->num_cols(); ++i) {
Packit ea1746
        // Add one to the denominator to prevent division by zero.
Packit ea1746
        jacobian_scaling_[i] = 1.0 / (1.0 + sqrt(jacobian_scaling_[i]));
Packit ea1746
      }
Packit ea1746
    }
Packit ea1746
Packit ea1746
    // jacobian = jacobian * diag(J'J) ^{-1}
Packit ea1746
    jacobian_->ScaleColumns(jacobian_scaling_.data());
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // The gradient exists in the local tangent space. To account for
Packit ea1746
  // the bounds constraints correctly, instead of just computing the
Packit ea1746
  // norm of the gradient vector, we compute
Packit ea1746
  //
Packit ea1746
  // |Plus(x, -gradient) - x|
Packit ea1746
  //
Packit ea1746
  // Where the Plus operator lifts the negative gradient to the
Packit ea1746
  // ambient space, adds it to x and projects it on the hypercube
Packit ea1746
  // defined by the bounds.
Packit ea1746
  negative_gradient_ = -gradient_;
Packit ea1746
  if (!evaluator_->Plus(x_.data(),
Packit ea1746
                        negative_gradient_.data(),
Packit ea1746
                        projected_gradient_step_.data())) {
Packit ea1746
    solver_summary_->message =
Packit ea1746
        "projected_gradient_step = Plus(x, -gradient) failed.";
Packit ea1746
    solver_summary_->termination_type = FAILURE;
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  iteration_summary_.gradient_max_norm =
Packit ea1746
      (x_ - projected_gradient_step_).lpNorm<Eigen::Infinity>();
Packit ea1746
  iteration_summary_.gradient_norm = (x_ - projected_gradient_step_).norm();
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// 1. Add the final timing information to the iteration summary.
Packit ea1746
// 2. Run the callbacks
Packit ea1746
// 3. Check for termination based on
Packit ea1746
//    a. Run time
Packit ea1746
//    b. Iteration count
Packit ea1746
//    c. Max norm of the gradient
Packit ea1746
//    d. Size of the trust region radius.
Packit ea1746
//
Packit ea1746
// Returns true if user did not terminate the solver and none of these
Packit ea1746
// termination criterion are met.
Packit ea1746
bool TrustRegionMinimizer::FinalizeIterationAndCheckIfMinimizerCanContinue() {
Packit ea1746
  if (iteration_summary_.step_is_successful) {
Packit ea1746
    ++solver_summary_->num_successful_steps;
Packit ea1746
    if (x_cost_ < minimum_cost_) {
Packit ea1746
      minimum_cost_ = x_cost_;
Packit ea1746
      VectorRef(parameters_, num_parameters_) = x_;
Packit ea1746
      iteration_summary_.step_is_nonmonotonic = false;
Packit ea1746
    } else {
Packit ea1746
      iteration_summary_.step_is_nonmonotonic = true;
Packit ea1746
    }
Packit ea1746
  } else {
Packit ea1746
    ++solver_summary_->num_unsuccessful_steps;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  iteration_summary_.trust_region_radius = strategy_->Radius();
Packit ea1746
  iteration_summary_.iteration_time_in_seconds =
Packit ea1746
      WallTimeInSeconds() - iteration_start_time_in_secs_;
Packit ea1746
  iteration_summary_.cumulative_time_in_seconds =
Packit ea1746
      WallTimeInSeconds() - start_time_in_secs_ +
Packit ea1746
      solver_summary_->preprocessor_time_in_seconds;
Packit ea1746
Packit ea1746
  solver_summary_->iterations.push_back(iteration_summary_);
Packit ea1746
Packit ea1746
  if (!RunCallbacks(options_, iteration_summary_, solver_summary_)) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  if (MaxSolverTimeReached()) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  if (MaxSolverIterationsReached()) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  if (GradientToleranceReached()) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  if (MinTrustRegionRadiusReached()) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Compute the trust region step using the TrustRegionStrategy chosen
Packit ea1746
// by the user.
Packit ea1746
//
Packit ea1746
// If the strategy returns with LINEAR_SOLVER_FATAL_ERROR, which
Packit ea1746
// indicates an unrecoverable error, return false. This is the only
Packit ea1746
// condition that returns false.
Packit ea1746
//
Packit ea1746
// If the strategy returns with LINEAR_SOLVER_FAILURE, which indicates
Packit ea1746
// a numerical failure that could be recovered from by retrying
Packit ea1746
// (e.g. by increasing the strength of the regularization), we set
Packit ea1746
// iteration_summary_.step_is_valid to false and return true.
Packit ea1746
//
Packit ea1746
// In all other cases, we compute the decrease in the trust region
Packit ea1746
// model problem. In exact arithmetic, this should always be
Packit ea1746
// positive, but due to numerical problems in the TrustRegionStrategy
Packit ea1746
// or round off error when computing the decrease it may be
Packit ea1746
// negative. In which case again, we set
Packit ea1746
// iteration_summary_.step_is_valid to false.
Packit ea1746
bool TrustRegionMinimizer::ComputeTrustRegionStep() {
Packit ea1746
  const double strategy_start_time = WallTimeInSeconds();
Packit ea1746
  iteration_summary_.step_is_valid = false;
Packit ea1746
  TrustRegionStrategy::PerSolveOptions per_solve_options;
Packit ea1746
  per_solve_options.eta = options_.eta;
Packit ea1746
  if (find(options_.trust_region_minimizer_iterations_to_dump.begin(),
Packit ea1746
           options_.trust_region_minimizer_iterations_to_dump.end(),
Packit ea1746
           iteration_summary_.iteration) !=
Packit ea1746
      options_.trust_region_minimizer_iterations_to_dump.end()) {
Packit ea1746
    per_solve_options.dump_format_type =
Packit ea1746
        options_.trust_region_problem_dump_format_type;
Packit ea1746
    per_solve_options.dump_filename_base =
Packit ea1746
        JoinPath(options_.trust_region_problem_dump_directory,
Packit ea1746
                 StringPrintf("ceres_solver_iteration_%03d",
Packit ea1746
                              iteration_summary_.iteration));
Packit ea1746
  }
Packit ea1746
Packit ea1746
  TrustRegionStrategy::Summary strategy_summary =
Packit ea1746
      strategy_->ComputeStep(per_solve_options,
Packit ea1746
                             jacobian_,
Packit ea1746
                             residuals_.data(),
Packit ea1746
                             trust_region_step_.data());
Packit ea1746
Packit ea1746
  if (strategy_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
Packit ea1746
    solver_summary_->message =
Packit ea1746
        "Linear solver failed due to unrecoverable "
Packit ea1746
        "non-numeric causes. Please see the error log for clues. ";
Packit ea1746
    solver_summary_->termination_type = FAILURE;
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  iteration_summary_.step_solver_time_in_seconds =
Packit ea1746
      WallTimeInSeconds() - strategy_start_time;
Packit ea1746
  iteration_summary_.linear_solver_iterations = strategy_summary.num_iterations;
Packit ea1746
Packit ea1746
  if (strategy_summary.termination_type == LINEAR_SOLVER_FAILURE) {
Packit ea1746
    return true;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // new_model_cost
Packit ea1746
  //  = 1/2 [f + J * step]^2
Packit ea1746
  //  = 1/2 [ f'f + 2f'J * step + step' * J' * J * step ]
Packit ea1746
  // model_cost_change
Packit ea1746
  //  = cost - new_model_cost
Packit ea1746
  //  = f'f/2  - 1/2 [ f'f + 2f'J * step + step' * J' * J * step]
Packit ea1746
  //  = -f'J * step - step' * J' * J * step / 2
Packit ea1746
  //  = -(J * step)'(f + J * step / 2)
Packit ea1746
  model_residuals_.setZero();
Packit ea1746
  jacobian_->RightMultiply(trust_region_step_.data(), model_residuals_.data());
Packit ea1746
  model_cost_change_ =
Packit ea1746
      -model_residuals_.dot(residuals_ + model_residuals_ / 2.0);
Packit ea1746
Packit ea1746
  // TODO(sameeragarwal)
Packit ea1746
  //
Packit ea1746
  //  1. What happens if model_cost_change_ = 0
Packit ea1746
  //  2. What happens if -epsilon <= model_cost_change_ < 0 for some
Packit ea1746
  //     small epsilon due to round off error.
Packit ea1746
  iteration_summary_.step_is_valid = (model_cost_change_ > 0.0);
Packit ea1746
  if (iteration_summary_.step_is_valid) {
Packit ea1746
    // Undo the Jacobian column scaling.
Packit ea1746
    delta_ = (trust_region_step_.array() * jacobian_scaling_.array()).matrix();
Packit ea1746
    num_consecutive_invalid_steps_ = 0;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  VLOG_IF(1, is_not_silent_ && !iteration_summary_.step_is_valid)
Packit ea1746
      << "Invalid step: current_cost: " << x_cost_
Packit ea1746
      << " absolute model cost change: " << model_cost_change_
Packit ea1746
      << " relative model cost change: " << (model_cost_change_ / x_cost_);
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Invalid steps can happen due to a number of reasons, and we allow a
Packit ea1746
// limited number of consecutive failures, and return false if this
Packit ea1746
// limit is exceeded.
Packit ea1746
bool TrustRegionMinimizer::HandleInvalidStep() {
Packit ea1746
  // TODO(sameeragarwal): Should we be returning FAILURE or
Packit ea1746
  // NO_CONVERGENCE? The solution value is still usable in many cases,
Packit ea1746
  // it is not clear if we should declare the solver a failure
Packit ea1746
  // entirely. For example the case where model_cost_change ~ 0.0, but
Packit ea1746
  // just slightly negative.
Packit ea1746
  if (++num_consecutive_invalid_steps_ >=
Packit ea1746
      options_.max_num_consecutive_invalid_steps) {
Packit ea1746
    solver_summary_->message = StringPrintf(
Packit ea1746
        "Number of consecutive invalid steps more "
Packit ea1746
        "than Solver::Options::max_num_consecutive_invalid_steps: %d",
Packit ea1746
        options_.max_num_consecutive_invalid_steps);
Packit ea1746
    solver_summary_->termination_type = FAILURE;
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  strategy_->StepIsInvalid();
Packit ea1746
Packit ea1746
  // We are going to try and reduce the trust region radius and
Packit ea1746
  // solve again. To do this, we are going to treat this iteration
Packit ea1746
  // as an unsuccessful iteration. Since the various callbacks are
Packit ea1746
  // still executed, we are going to fill the iteration summary
Packit ea1746
  // with data that assumes a step of length zero and no progress.
Packit ea1746
  iteration_summary_.cost = x_cost_ + solver_summary_->fixed_cost;
Packit ea1746
  iteration_summary_.cost_change = 0.0;
Packit ea1746
  iteration_summary_.gradient_max_norm =
Packit ea1746
      solver_summary_->iterations.back().gradient_max_norm;
Packit ea1746
  iteration_summary_.gradient_norm =
Packit ea1746
      solver_summary_->iterations.back().gradient_norm;
Packit ea1746
  iteration_summary_.step_norm = 0.0;
Packit ea1746
  iteration_summary_.relative_decrease = 0.0;
Packit ea1746
  iteration_summary_.eta = options_.eta;
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Use the supplied coordinate descent minimizer to perform inner
Packit ea1746
// iterations and compute the improvement due to it. Returns the cost
Packit ea1746
// after performing the inner iterations.
Packit ea1746
//
Packit ea1746
// The optimization is performed with candidate_x_ as the starting
Packit ea1746
// point, and if the optimization is successful, candidate_x_ will be
Packit ea1746
// updated with the optimized parameters.
Packit ea1746
void TrustRegionMinimizer::DoInnerIterationsIfNeeded() {
Packit ea1746
  inner_iterations_were_useful_ = false;
Packit ea1746
  if (!inner_iterations_are_enabled_ ||
Packit ea1746
      candidate_cost_ >= std::numeric_limits<double>::max()) {
Packit ea1746
    return;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  double inner_iteration_start_time = WallTimeInSeconds();
Packit ea1746
  ++solver_summary_->num_inner_iteration_steps;
Packit ea1746
  inner_iteration_x_ = candidate_x_;
Packit ea1746
  Solver::Summary inner_iteration_summary;
Packit ea1746
  options_.inner_iteration_minimizer->Minimize(
Packit ea1746
      options_, inner_iteration_x_.data(), &inner_iteration_summary);
Packit ea1746
  double inner_iteration_cost;
Packit ea1746
  if (!evaluator_->Evaluate(
Packit ea1746
          inner_iteration_x_.data(), &inner_iteration_cost, NULL, NULL, NULL)) {
Packit ea1746
    VLOG_IF(2, is_not_silent_) << "Inner iteration failed.";
Packit ea1746
    return;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  VLOG_IF(2, is_not_silent_)
Packit ea1746
      << "Inner iteration succeeded; Current cost: " << x_cost_
Packit ea1746
      << " Trust region step cost: " << candidate_cost_
Packit ea1746
      << " Inner iteration cost: " << inner_iteration_cost;
Packit ea1746
Packit ea1746
  candidate_x_ = inner_iteration_x_;
Packit ea1746
Packit ea1746
  // Normally, the quality of a trust region step is measured by
Packit ea1746
  // the ratio
Packit ea1746
  //
Packit ea1746
  //              cost_change
Packit ea1746
  //    r =    -----------------
Packit ea1746
  //           model_cost_change
Packit ea1746
  //
Packit ea1746
  // All the change in the nonlinear objective is due to the trust
Packit ea1746
  // region step so this ratio is a good measure of the quality of
Packit ea1746
  // the trust region radius. However, when inner iterations are
Packit ea1746
  // being used, cost_change includes the contribution of the
Packit ea1746
  // inner iterations and its not fair to credit it all to the
Packit ea1746
  // trust region algorithm. So we change the ratio to be
Packit ea1746
  //
Packit ea1746
  //                              cost_change
Packit ea1746
  //    r =    ------------------------------------------------
Packit ea1746
  //           (model_cost_change + inner_iteration_cost_change)
Packit ea1746
  //
Packit ea1746
  // Practically we do this by increasing model_cost_change by
Packit ea1746
  // inner_iteration_cost_change.
Packit ea1746
Packit ea1746
  const double inner_iteration_cost_change =
Packit ea1746
      candidate_cost_ - inner_iteration_cost;
Packit ea1746
  model_cost_change_ += inner_iteration_cost_change;
Packit ea1746
  inner_iterations_were_useful_ = inner_iteration_cost < x_cost_;
Packit ea1746
  const double inner_iteration_relative_progress =
Packit ea1746
      1.0 - inner_iteration_cost / candidate_cost_;
Packit ea1746
Packit ea1746
  // Disable inner iterations once the relative improvement
Packit ea1746
  // drops below tolerance.
Packit ea1746
  inner_iterations_are_enabled_ =
Packit ea1746
      (inner_iteration_relative_progress > options_.inner_iteration_tolerance);
Packit ea1746
  VLOG_IF(2, is_not_silent_ && !inner_iterations_are_enabled_)
Packit ea1746
      << "Disabling inner iterations. Progress : "
Packit ea1746
      << inner_iteration_relative_progress;
Packit ea1746
  candidate_cost_ = inner_iteration_cost;
Packit ea1746
Packit ea1746
  solver_summary_->inner_iteration_time_in_seconds +=
Packit ea1746
      WallTimeInSeconds() - inner_iteration_start_time;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Perform a projected line search to improve the objective function
Packit ea1746
// value along delta.
Packit ea1746
//
Packit ea1746
// TODO(sameeragarwal): The current implementation does not do
Packit ea1746
// anything illegal but is incorrect and not terribly effective.
Packit ea1746
//
Packit ea1746
// https://github.com/ceres-solver/ceres-solver/issues/187
Packit ea1746
void TrustRegionMinimizer::DoLineSearch(const Vector& x,
Packit ea1746
                                        const Vector& gradient,
Packit ea1746
                                        const double cost,
Packit ea1746
                                        Vector* delta) {
Packit ea1746
  LineSearchFunction line_search_function(evaluator_);
Packit ea1746
Packit ea1746
  LineSearch::Options line_search_options;
Packit ea1746
  line_search_options.is_silent = true;
Packit ea1746
  line_search_options.interpolation_type =
Packit ea1746
      options_.line_search_interpolation_type;
Packit ea1746
  line_search_options.min_step_size = options_.min_line_search_step_size;
Packit ea1746
  line_search_options.sufficient_decrease =
Packit ea1746
      options_.line_search_sufficient_function_decrease;
Packit ea1746
  line_search_options.max_step_contraction =
Packit ea1746
      options_.max_line_search_step_contraction;
Packit ea1746
  line_search_options.min_step_contraction =
Packit ea1746
      options_.min_line_search_step_contraction;
Packit ea1746
  line_search_options.max_num_iterations =
Packit ea1746
      options_.max_num_line_search_step_size_iterations;
Packit ea1746
  line_search_options.sufficient_curvature_decrease =
Packit ea1746
      options_.line_search_sufficient_curvature_decrease;
Packit ea1746
  line_search_options.max_step_expansion =
Packit ea1746
      options_.max_line_search_step_expansion;
Packit ea1746
  line_search_options.function = &line_search_function;
Packit ea1746
Packit ea1746
  std::string message;
Packit ea1746
  scoped_ptr<LineSearch> line_search(CHECK_NOTNULL(
Packit ea1746
      LineSearch::Create(ceres::ARMIJO, line_search_options, &message)));
Packit ea1746
  LineSearch::Summary line_search_summary;
Packit ea1746
  line_search_function.Init(x, *delta);
Packit ea1746
  line_search->Search(1.0, cost, gradient.dot(*delta), &line_search_summary);
Packit ea1746
Packit ea1746
  solver_summary_->num_line_search_steps += line_search_summary.num_iterations;
Packit ea1746
  solver_summary_->line_search_cost_evaluation_time_in_seconds +=
Packit ea1746
      line_search_summary.cost_evaluation_time_in_seconds;
Packit ea1746
  solver_summary_->line_search_gradient_evaluation_time_in_seconds +=
Packit ea1746
      line_search_summary.gradient_evaluation_time_in_seconds;
Packit ea1746
  solver_summary_->line_search_polynomial_minimization_time_in_seconds +=
Packit ea1746
      line_search_summary.polynomial_minimization_time_in_seconds;
Packit ea1746
  solver_summary_->line_search_total_time_in_seconds +=
Packit ea1746
      line_search_summary.total_time_in_seconds;
Packit ea1746
Packit ea1746
  if (line_search_summary.success) {
Packit ea1746
    *delta *= line_search_summary.optimal_point.x;
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
// Check if the maximum amount of time allowed by the user for the
Packit ea1746
// solver has been exceeded, and if so return false after updating
Packit ea1746
// Solver::Summary::message.
Packit ea1746
bool TrustRegionMinimizer::MaxSolverTimeReached() {
Packit ea1746
  const double total_solver_time =
Packit ea1746
      WallTimeInSeconds() - start_time_in_secs_ +
Packit ea1746
      solver_summary_->preprocessor_time_in_seconds;
Packit ea1746
  if (total_solver_time < options_.max_solver_time_in_seconds) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  solver_summary_->message = StringPrintf("Maximum solver time reached. "
Packit ea1746
                                          "Total solver time: %e >= %e.",
Packit ea1746
                                          total_solver_time,
Packit ea1746
                                          options_.max_solver_time_in_seconds);
Packit ea1746
  solver_summary_->termination_type = NO_CONVERGENCE;
Packit ea1746
  VLOG_IF(1, is_not_silent_) << "Terminating: " << solver_summary_->message;
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Check if the maximum number of iterations allowed by the user for
Packit ea1746
// the solver has been exceeded, and if so return false after updating
Packit ea1746
// Solver::Summary::message.
Packit ea1746
bool TrustRegionMinimizer::MaxSolverIterationsReached() {
Packit ea1746
  if (iteration_summary_.iteration < options_.max_num_iterations) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  solver_summary_->message =
Packit ea1746
      StringPrintf("Maximum number of iterations reached. "
Packit ea1746
                   "Number of iterations: %d.",
Packit ea1746
                   iteration_summary_.iteration);
Packit ea1746
Packit ea1746
  solver_summary_->termination_type = NO_CONVERGENCE;
Packit ea1746
  VLOG_IF(1, is_not_silent_) << "Terminating: " << solver_summary_->message;
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Check convergence based on the max norm of the gradient (only for
Packit ea1746
// iterations where the step was declared successful).
Packit ea1746
bool TrustRegionMinimizer::GradientToleranceReached() {
Packit ea1746
  if (!iteration_summary_.step_is_successful ||
Packit ea1746
      iteration_summary_.gradient_max_norm > options_.gradient_tolerance) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  solver_summary_->message = StringPrintf(
Packit ea1746
      "Gradient tolerance reached. "
Packit ea1746
      "Gradient max norm: %e <= %e",
Packit ea1746
      iteration_summary_.gradient_max_norm,
Packit ea1746
      options_.gradient_tolerance);
Packit ea1746
  solver_summary_->termination_type = CONVERGENCE;
Packit ea1746
  VLOG_IF(1, is_not_silent_) << "Terminating: " << solver_summary_->message;
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Check convergence based the size of the trust region radius.
Packit ea1746
bool TrustRegionMinimizer::MinTrustRegionRadiusReached() {
Packit ea1746
  if (iteration_summary_.trust_region_radius >
Packit ea1746
      options_.min_trust_region_radius) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  solver_summary_->message =
Packit ea1746
      StringPrintf("Minimum trust region radius reached. "
Packit ea1746
                   "Trust region radius: %e <= %e",
Packit ea1746
                   iteration_summary_.trust_region_radius,
Packit ea1746
                   options_.min_trust_region_radius);
Packit ea1746
  solver_summary_->termination_type = CONVERGENCE;
Packit ea1746
  VLOG_IF(1, is_not_silent_) << "Terminating: " << solver_summary_->message;
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Solver::Options::parameter_tolerance based convergence check.
Packit ea1746
bool TrustRegionMinimizer::ParameterToleranceReached() {
Packit ea1746
  // Compute the norm of the step in the ambient space.
Packit ea1746
  iteration_summary_.step_norm = (x_ - candidate_x_).norm();
Packit ea1746
  const double step_size_tolerance =
Packit ea1746
      options_.parameter_tolerance * (x_norm_ + options_.parameter_tolerance);
Packit ea1746
Packit ea1746
  if (iteration_summary_.step_norm > step_size_tolerance) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  solver_summary_->message = StringPrintf(
Packit ea1746
      "Parameter tolerance reached. "
Packit ea1746
      "Relative step_norm: %e <= %e.",
Packit ea1746
      (iteration_summary_.step_norm / (x_norm_ + options_.parameter_tolerance)),
Packit ea1746
      options_.parameter_tolerance);
Packit ea1746
  solver_summary_->termination_type = CONVERGENCE;
Packit ea1746
  VLOG_IF(1, is_not_silent_) << "Terminating: " << solver_summary_->message;
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Solver::Options::function_tolerance based convergence check.
Packit ea1746
bool TrustRegionMinimizer::FunctionToleranceReached() {
Packit ea1746
  iteration_summary_.cost_change = x_cost_ - candidate_cost_;
Packit ea1746
  const double absolute_function_tolerance =
Packit ea1746
      options_.function_tolerance * x_cost_;
Packit ea1746
Packit ea1746
  if (fabs(iteration_summary_.cost_change) > absolute_function_tolerance) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  solver_summary_->message = StringPrintf(
Packit ea1746
      "Function tolerance reached. "
Packit ea1746
      "|cost_change|/cost: %e <= %e",
Packit ea1746
      fabs(iteration_summary_.cost_change) / x_cost_,
Packit ea1746
      options_.function_tolerance);
Packit ea1746
  solver_summary_->termination_type = CONVERGENCE;
Packit ea1746
  VLOG_IF(1, is_not_silent_) << "Terminating: " << solver_summary_->message;
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Compute candidate_x_ = Plus(x_, delta_)
Packit ea1746
// Evaluate the cost of candidate_x_ as candidate_cost_.
Packit ea1746
//
Packit ea1746
// Failure to compute the step or the cost mean that candidate_cost_
Packit ea1746
// is set to std::numeric_limits<double>::max(). Unlike
Packit ea1746
// EvaluateGradientAndJacobian, failure in this function is not fatal
Packit ea1746
// as we are only computing and evaluating a candidate point, and if
Packit ea1746
// for some reason we are unable to evaluate it, we consider it to be
Packit ea1746
// a point with very high cost. This allows the user to deal with edge
Packit ea1746
// cases/constraints as part of the LocalParameterization and
Packit ea1746
// CostFunction objects.
Packit ea1746
void TrustRegionMinimizer::ComputeCandidatePointAndEvaluateCost() {
Packit ea1746
  if (!evaluator_->Plus(x_.data(), delta_.data(), candidate_x_.data())) {
Packit ea1746
    LOG_IF(WARNING, is_not_silent_)
Packit ea1746
        << "x_plus_delta = Plus(x, delta) failed. "
Packit ea1746
        << "Treating it as a step with infinite cost";
Packit ea1746
    candidate_cost_ = std::numeric_limits<double>::max();
Packit ea1746
    return;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  if (!evaluator_->Evaluate(
Packit ea1746
          candidate_x_.data(), &candidate_cost_, NULL, NULL, NULL)) {
Packit ea1746
    LOG_IF(WARNING, is_not_silent_)
Packit ea1746
        << "Step failed to evaluate. "
Packit ea1746
        << "Treating it as a step with infinite cost";
Packit ea1746
    candidate_cost_ = std::numeric_limits<double>::max();
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
bool TrustRegionMinimizer::IsStepSuccessful() {
Packit ea1746
  iteration_summary_.relative_decrease =
Packit ea1746
      step_evaluator_->StepQuality(candidate_cost_, model_cost_change_);
Packit ea1746
Packit ea1746
  // In most cases, boosting the model_cost_change by the
Packit ea1746
  // improvement caused by the inner iterations is fine, but it can
Packit ea1746
  // be the case that the original trust region step was so bad that
Packit ea1746
  // the resulting improvement in the cost was negative, and the
Packit ea1746
  // change caused by the inner iterations was large enough to
Packit ea1746
  // improve the step, but also to make relative decrease quite
Packit ea1746
  // small.
Packit ea1746
  //
Packit ea1746
  // This can cause the trust region loop to reject this step. To
Packit ea1746
  // get around this, we expicitly check if the inner iterations
Packit ea1746
  // led to a net decrease in the objective function value. If
Packit ea1746
  // they did, we accept the step even if the trust region ratio
Packit ea1746
  // is small.
Packit ea1746
  //
Packit ea1746
  // Notice that we do not just check that cost_change is positive
Packit ea1746
  // which is a weaker condition and would render the
Packit ea1746
  // min_relative_decrease threshold useless. Instead, we keep
Packit ea1746
  // track of inner_iterations_were_useful, which is true only
Packit ea1746
  // when inner iterations lead to a net decrease in the cost.
Packit ea1746
  return (inner_iterations_were_useful_ ||
Packit ea1746
          iteration_summary_.relative_decrease >
Packit ea1746
              options_.min_relative_decrease);
Packit ea1746
}
Packit ea1746
Packit ea1746
// Declare the step successful, move to candidate_x, update the
Packit ea1746
// derivatives and let the trust region strategy and the step
Packit ea1746
// evaluator know that the step has been accepted.
Packit ea1746
bool TrustRegionMinimizer::HandleSuccessfulStep() {
Packit ea1746
  x_ = candidate_x_;
Packit ea1746
  x_norm_ = x_.norm();
Packit ea1746
Packit ea1746
  if (!EvaluateGradientAndJacobian()) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  iteration_summary_.step_is_successful = true;
Packit ea1746
  strategy_->StepAccepted(iteration_summary_.relative_decrease);
Packit ea1746
  step_evaluator_->StepAccepted(candidate_cost_, model_cost_change_);
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Declare the step unsuccessful and inform the trust region strategy.
Packit ea1746
void TrustRegionMinimizer::HandleUnsuccessfulStep() {
Packit ea1746
  iteration_summary_.step_is_successful = false;
Packit ea1746
  strategy_->StepRejected(iteration_summary_.relative_decrease);
Packit ea1746
  iteration_summary_.cost = candidate_cost_ + solver_summary_->fixed_cost;
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres