Blame internal/ceres/suitesparse.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
Packit ea1746
// This include must come before any #ifndef check on Ceres compile options.
Packit ea1746
#include "ceres/internal/port.h"
Packit ea1746
Packit ea1746
#ifndef CERES_NO_SUITESPARSE
Packit ea1746
#include "ceres/suitesparse.h"
Packit ea1746
Packit ea1746
#include <vector>
Packit ea1746
Packit ea1746
#include "ceres/compressed_col_sparse_matrix_utils.h"
Packit ea1746
#include "ceres/compressed_row_sparse_matrix.h"
Packit ea1746
#include "ceres/linear_solver.h"
Packit ea1746
#include "ceres/triplet_sparse_matrix.h"
Packit ea1746
#include "cholmod.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
using std::string;
Packit ea1746
using std::vector;
Packit ea1746
Packit ea1746
SuiteSparse::SuiteSparse() { cholmod_start(&cc_;; }
Packit ea1746
Packit ea1746
SuiteSparse::~SuiteSparse() { cholmod_finish(&cc_;; }
Packit ea1746
Packit ea1746
cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) {
Packit ea1746
  cholmod_triplet triplet;
Packit ea1746
Packit ea1746
  triplet.nrow = A->num_rows();
Packit ea1746
  triplet.ncol = A->num_cols();
Packit ea1746
  triplet.nzmax = A->max_num_nonzeros();
Packit ea1746
  triplet.nnz = A->num_nonzeros();
Packit ea1746
  triplet.i = reinterpret_cast<void*>(A->mutable_rows());
Packit ea1746
  triplet.j = reinterpret_cast<void*>(A->mutable_cols());
Packit ea1746
  triplet.x = reinterpret_cast<void*>(A->mutable_values());
Packit ea1746
  triplet.stype = 0;  // Matrix is not symmetric.
Packit ea1746
  triplet.itype = CHOLMOD_INT;
Packit ea1746
  triplet.xtype = CHOLMOD_REAL;
Packit ea1746
  triplet.dtype = CHOLMOD_DOUBLE;
Packit ea1746
Packit ea1746
  return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_;;
Packit ea1746
}
Packit ea1746
Packit ea1746
cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose(
Packit ea1746
    TripletSparseMatrix* A) {
Packit ea1746
  cholmod_triplet triplet;
Packit ea1746
Packit ea1746
  triplet.ncol = A->num_rows();  // swap row and columns
Packit ea1746
  triplet.nrow = A->num_cols();
Packit ea1746
  triplet.nzmax = A->max_num_nonzeros();
Packit ea1746
  triplet.nnz = A->num_nonzeros();
Packit ea1746
Packit ea1746
  // swap rows and columns
Packit ea1746
  triplet.j = reinterpret_cast<void*>(A->mutable_rows());
Packit ea1746
  triplet.i = reinterpret_cast<void*>(A->mutable_cols());
Packit ea1746
  triplet.x = reinterpret_cast<void*>(A->mutable_values());
Packit ea1746
  triplet.stype = 0;  // Matrix is not symmetric.
Packit ea1746
  triplet.itype = CHOLMOD_INT;
Packit ea1746
  triplet.xtype = CHOLMOD_REAL;
Packit ea1746
  triplet.dtype = CHOLMOD_DOUBLE;
Packit ea1746
Packit ea1746
  return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_;;
Packit ea1746
}
Packit ea1746
Packit ea1746
cholmod_sparse SuiteSparse::CreateSparseMatrixTransposeView(
Packit ea1746
    CompressedRowSparseMatrix* A) {
Packit ea1746
  cholmod_sparse m;
Packit ea1746
  m.nrow = A->num_cols();
Packit ea1746
  m.ncol = A->num_rows();
Packit ea1746
  m.nzmax = A->num_nonzeros();
Packit ea1746
  m.nz = NULL;
Packit ea1746
  m.p = reinterpret_cast<void*>(A->mutable_rows());
Packit ea1746
  m.i = reinterpret_cast<void*>(A->mutable_cols());
Packit ea1746
  m.x = reinterpret_cast<void*>(A->mutable_values());
Packit ea1746
  m.z = NULL;
Packit ea1746
Packit ea1746
  if (A->storage_type() == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
Packit ea1746
    m.stype = 1;
Packit ea1746
  } else if (A->storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
Packit ea1746
    m.stype = -1;
Packit ea1746
  } else {
Packit ea1746
    m.stype = 0;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  m.itype = CHOLMOD_INT;
Packit ea1746
  m.xtype = CHOLMOD_REAL;
Packit ea1746
  m.dtype = CHOLMOD_DOUBLE;
Packit ea1746
  m.sorted = 1;
Packit ea1746
  m.packed = 1;
Packit ea1746
Packit ea1746
  return m;
Packit ea1746
}
Packit ea1746
Packit ea1746
cholmod_dense* SuiteSparse::CreateDenseVector(const double* x,
Packit ea1746
                                              int in_size,
Packit ea1746
                                              int out_size) {
Packit ea1746
  CHECK_LE(in_size, out_size);
Packit ea1746
  cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_;;
Packit ea1746
  if (x != NULL) {
Packit ea1746
    memcpy(v->x, x, in_size * sizeof(*x));
Packit ea1746
  }
Packit ea1746
  return v;
Packit ea1746
}
Packit ea1746
Packit ea1746
cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A,
Packit ea1746
                                             string* message) {
Packit ea1746
  // Cholmod can try multiple re-ordering strategies to find a fill
Packit ea1746
  // reducing ordering. Here we just tell it use AMD with automatic
Packit ea1746
  // matrix dependence choice of supernodal versus simplicial
Packit ea1746
  // factorization.
Packit ea1746
  cc_.nmethods = 1;
Packit ea1746
  cc_.method[0].ordering = CHOLMOD_AMD;
Packit ea1746
  cc_.supernodal = CHOLMOD_AUTO;
Packit ea1746
Packit ea1746
  cholmod_factor* factor = cholmod_analyze(A, &cc_;;
Packit ea1746
  if (VLOG_IS_ON(2)) {
Packit ea1746
    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_;;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  if (cc_.status != CHOLMOD_OK) {
Packit ea1746
    *message =
Packit ea1746
        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
Packit ea1746
    return NULL;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  return CHECK_NOTNULL(factor);
Packit ea1746
}
Packit ea1746
Packit ea1746
cholmod_factor* SuiteSparse::BlockAnalyzeCholesky(cholmod_sparse* A,
Packit ea1746
                                                  const vector<int>& row_blocks,
Packit ea1746
                                                  const vector<int>& col_blocks,
Packit ea1746
                                                  string* message) {
Packit ea1746
  vector<int> ordering;
Packit ea1746
  if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) {
Packit ea1746
    return NULL;
Packit ea1746
  }
Packit ea1746
  return AnalyzeCholeskyWithUserOrdering(A, ordering, message);
Packit ea1746
}
Packit ea1746
Packit ea1746
cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(
Packit ea1746
    cholmod_sparse* A, const vector<int>& ordering, string* message) {
Packit ea1746
  CHECK_EQ(ordering.size(), A->nrow);
Packit ea1746
Packit ea1746
  cc_.nmethods = 1;
Packit ea1746
  cc_.method[0].ordering = CHOLMOD_GIVEN;
Packit ea1746
Packit ea1746
  cholmod_factor* factor =
Packit ea1746
      cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), NULL, 0, &cc_;;
Packit ea1746
  if (VLOG_IS_ON(2)) {
Packit ea1746
    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_;;
Packit ea1746
  }
Packit ea1746
  if (cc_.status != CHOLMOD_OK) {
Packit ea1746
    *message =
Packit ea1746
        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
Packit ea1746
    return NULL;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  return CHECK_NOTNULL(factor);
Packit ea1746
}
Packit ea1746
Packit ea1746
cholmod_factor* SuiteSparse::AnalyzeCholeskyWithNaturalOrdering(
Packit ea1746
    cholmod_sparse* A, string* message) {
Packit ea1746
  cc_.nmethods = 1;
Packit ea1746
  cc_.method[0].ordering = CHOLMOD_NATURAL;
Packit ea1746
  cc_.postorder = 0;
Packit ea1746
Packit ea1746
  cholmod_factor* factor = cholmod_analyze(A, &cc_;;
Packit ea1746
  if (VLOG_IS_ON(2)) {
Packit ea1746
    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_;;
Packit ea1746
  }
Packit ea1746
  if (cc_.status != CHOLMOD_OK) {
Packit ea1746
    *message =
Packit ea1746
        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
Packit ea1746
    return NULL;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  return CHECK_NOTNULL(factor);
Packit ea1746
}
Packit ea1746
Packit ea1746
bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A,
Packit ea1746
                                   const vector<int>& row_blocks,
Packit ea1746
                                   const vector<int>& col_blocks,
Packit ea1746
                                   vector<int>* ordering) {
Packit ea1746
  const int num_row_blocks = row_blocks.size();
Packit ea1746
  const int num_col_blocks = col_blocks.size();
Packit ea1746
Packit ea1746
  // Arrays storing the compressed column structure of the matrix
Packit ea1746
  // incoding the block sparsity of A.
Packit ea1746
  vector<int> block_cols;
Packit ea1746
  vector<int> block_rows;
Packit ea1746
Packit ea1746
  CompressedColumnScalarMatrixToBlockMatrix(reinterpret_cast<const int*>(A->i),
Packit ea1746
                                            reinterpret_cast<const int*>(A->p),
Packit ea1746
                                            row_blocks,
Packit ea1746
                                            col_blocks,
Packit ea1746
                                            &block_rows,
Packit ea1746
                                            &block_cols);
Packit ea1746
  cholmod_sparse_struct block_matrix;
Packit ea1746
  block_matrix.nrow = num_row_blocks;
Packit ea1746
  block_matrix.ncol = num_col_blocks;
Packit ea1746
  block_matrix.nzmax = block_rows.size();
Packit ea1746
  block_matrix.p = reinterpret_cast<void*>(&block_cols[0]);
Packit ea1746
  block_matrix.i = reinterpret_cast<void*>(&block_rows[0]);
Packit ea1746
  block_matrix.x = NULL;
Packit ea1746
  block_matrix.stype = A->stype;
Packit ea1746
  block_matrix.itype = CHOLMOD_INT;
Packit ea1746
  block_matrix.xtype = CHOLMOD_PATTERN;
Packit ea1746
  block_matrix.dtype = CHOLMOD_DOUBLE;
Packit ea1746
  block_matrix.sorted = 1;
Packit ea1746
  block_matrix.packed = 1;
Packit ea1746
Packit ea1746
  vector<int> block_ordering(num_row_blocks);
Packit ea1746
  if (!cholmod_amd(&block_matrix, NULL, 0, &block_ordering[0], &cc_)) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering);
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
LinearSolverTerminationType SuiteSparse::Cholesky(cholmod_sparse* A,
Packit ea1746
                                                  cholmod_factor* L,
Packit ea1746
                                                  string* message) {
Packit ea1746
  CHECK_NOTNULL(A);
Packit ea1746
  CHECK_NOTNULL(L);
Packit ea1746
Packit ea1746
  // Save the current print level and silence CHOLMOD, otherwise
Packit ea1746
  // CHOLMOD is prone to dumping stuff to stderr, which can be
Packit ea1746
  // distracting when the error (matrix is indefinite) is not a fatal
Packit ea1746
  // failure.
Packit ea1746
  const int old_print_level = cc_.print;
Packit ea1746
  cc_.print = 0;
Packit ea1746
Packit ea1746
  cc_.quick_return_if_not_posdef = 1;
Packit ea1746
  int cholmod_status = cholmod_factorize(A, L, &cc_;;
Packit ea1746
  cc_.print = old_print_level;
Packit ea1746
Packit ea1746
  switch (cc_.status) {
Packit ea1746
    case CHOLMOD_NOT_INSTALLED:
Packit ea1746
      *message = "CHOLMOD failure: Method not installed.";
Packit ea1746
      return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
    case CHOLMOD_OUT_OF_MEMORY:
Packit ea1746
      *message = "CHOLMOD failure: Out of memory.";
Packit ea1746
      return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
    case CHOLMOD_TOO_LARGE:
Packit ea1746
      *message = "CHOLMOD failure: Integer overflow occurred.";
Packit ea1746
      return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
    case CHOLMOD_INVALID:
Packit ea1746
      *message = "CHOLMOD failure: Invalid input.";
Packit ea1746
      return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
    case CHOLMOD_NOT_POSDEF:
Packit ea1746
      *message = "CHOLMOD warning: Matrix not positive definite.";
Packit ea1746
      return LINEAR_SOLVER_FAILURE;
Packit ea1746
    case CHOLMOD_DSMALL:
Packit ea1746
      *message =
Packit ea1746
          "CHOLMOD warning: D for LDL' or diag(L) or "
Packit ea1746
          "LL' has tiny absolute value.";
Packit ea1746
      return LINEAR_SOLVER_FAILURE;
Packit ea1746
    case CHOLMOD_OK:
Packit ea1746
      if (cholmod_status != 0) {
Packit ea1746
        return LINEAR_SOLVER_SUCCESS;
Packit ea1746
      }
Packit ea1746
Packit ea1746
      *message =
Packit ea1746
          "CHOLMOD failure: cholmod_factorize returned false "
Packit ea1746
          "but cholmod_common::status is CHOLMOD_OK."
Packit ea1746
          "Please report this to ceres-solver@googlegroups.com.";
Packit ea1746
      return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
    default:
Packit ea1746
      *message = StringPrintf(
Packit ea1746
          "Unknown cholmod return code: %d. "
Packit ea1746
          "Please report this to ceres-solver@googlegroups.com.",
Packit ea1746
          cc_.status);
Packit ea1746
      return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
}
Packit ea1746
Packit ea1746
cholmod_dense* SuiteSparse::Solve(cholmod_factor* L,
Packit ea1746
                                  cholmod_dense* b,
Packit ea1746
                                  string* message) {
Packit ea1746
  if (cc_.status != CHOLMOD_OK) {
Packit ea1746
    *message = "cholmod_solve failed. CHOLMOD status is not CHOLMOD_OK";
Packit ea1746
    return NULL;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  return cholmod_solve(CHOLMOD_A, L, b, &cc_;;
Packit ea1746
}
Packit ea1746
Packit ea1746
bool SuiteSparse::ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
Packit ea1746
                                                   int* ordering) {
Packit ea1746
  return cholmod_amd(matrix, NULL, 0, ordering, &cc_;;
Packit ea1746
}
Packit ea1746
Packit ea1746
bool SuiteSparse::ConstrainedApproximateMinimumDegreeOrdering(
Packit ea1746
    cholmod_sparse* matrix, int* constraints, int* ordering) {
Packit ea1746
#ifndef CERES_NO_CAMD
Packit ea1746
  return cholmod_camd(matrix, NULL, 0, constraints, ordering, &cc_;;
Packit ea1746
#else
Packit ea1746
  LOG(FATAL) << "Congratulations you have found a bug in Ceres."
Packit ea1746
             << "Ceres Solver was compiled with SuiteSparse "
Packit ea1746
             << "version 4.1.0 or less. Calling this function "
Packit ea1746
             << "in that case is a bug. Please contact the"
Packit ea1746
             << "the Ceres Solver developers.";
Packit ea1746
  return false;
Packit ea1746
#endif
Packit ea1746
}
Packit ea1746
Packit ea1746
SuiteSparseCholesky* SuiteSparseCholesky::Create(
Packit ea1746
    const OrderingType ordering_type) {
Packit ea1746
  return new SuiteSparseCholesky(ordering_type);
Packit ea1746
}
Packit ea1746
Packit ea1746
SuiteSparseCholesky::SuiteSparseCholesky(const OrderingType ordering_type)
Packit ea1746
    : ordering_type_(ordering_type), factor_(NULL) {}
Packit ea1746
Packit ea1746
SuiteSparseCholesky::~SuiteSparseCholesky() {
Packit ea1746
  if (factor_ != NULL) {
Packit ea1746
    ss_.Free(factor_);
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
LinearSolverTerminationType SuiteSparseCholesky::Factorize(
Packit ea1746
    CompressedRowSparseMatrix* lhs, string* message) {
Packit ea1746
  if (lhs == NULL) {
Packit ea1746
    *message = "Failure: Input lhs is NULL.";
Packit ea1746
    return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  cholmod_sparse cholmod_lhs = ss_.CreateSparseMatrixTransposeView(lhs);
Packit ea1746
Packit ea1746
  if (factor_ == NULL) {
Packit ea1746
    if (ordering_type_ == NATURAL) {
Packit ea1746
      factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&cholmod_lhs, message);
Packit ea1746
    } else {
Packit ea1746
      if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) {
Packit ea1746
        factor_ = ss_.BlockAnalyzeCholesky(
Packit ea1746
            &cholmod_lhs, lhs->col_blocks(), lhs->row_blocks(), message);
Packit ea1746
      } else {
Packit ea1746
        factor_ = ss_.AnalyzeCholesky(&cholmod_lhs, message);
Packit ea1746
      }
Packit ea1746
    }
Packit ea1746
Packit ea1746
    if (factor_ == NULL) {
Packit ea1746
      return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  return ss_.Cholesky(&cholmod_lhs, factor_, message);
Packit ea1746
}
Packit ea1746
Packit ea1746
CompressedRowSparseMatrix::StorageType SuiteSparseCholesky::StorageType()
Packit ea1746
    const {
Packit ea1746
  return ((ordering_type_ == NATURAL)
Packit ea1746
              ? CompressedRowSparseMatrix::UPPER_TRIANGULAR
Packit ea1746
              : CompressedRowSparseMatrix::LOWER_TRIANGULAR);
Packit ea1746
}
Packit ea1746
Packit ea1746
LinearSolverTerminationType SuiteSparseCholesky::Solve(const double* rhs,
Packit ea1746
                                                       double* solution,
Packit ea1746
                                                       string* message) {
Packit ea1746
  // Error checking
Packit ea1746
  if (factor_ == NULL) {
Packit ea1746
    *message = "Solve called without a call to Factorize first.";
Packit ea1746
    return LINEAR_SOLVER_FATAL_ERROR;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  const int num_cols = factor_->n;
Packit ea1746
  cholmod_dense* cholmod_dense_rhs =
Packit ea1746
      ss_.CreateDenseVector(rhs, num_cols, num_cols);
Packit ea1746
  cholmod_dense* cholmod_dense_solution =
Packit ea1746
      ss_.Solve(factor_, cholmod_dense_rhs, message);
Packit ea1746
  ss_.Free(cholmod_dense_rhs);
Packit ea1746
  if (cholmod_dense_solution == NULL) {
Packit ea1746
    return LINEAR_SOLVER_FAILURE;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  memcpy(solution, cholmod_dense_solution->x, num_cols * sizeof(*solution));
Packit ea1746
  ss_.Free(cholmod_dense_solution);
Packit ea1746
  return LINEAR_SOLVER_SUCCESS;
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres
Packit ea1746
Packit ea1746
#endif  // CERES_NO_SUITESPARSE