Blame internal/ceres/reorder_program.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
Packit ea1746
#include "ceres/reorder_program.h"
Packit ea1746
Packit ea1746
#include <algorithm>
Packit ea1746
#include <numeric>
Packit ea1746
#include <vector>
Packit ea1746
Packit ea1746
#include "ceres/cxsparse.h"
Packit ea1746
#include "ceres/internal/port.h"
Packit ea1746
#include "ceres/ordered_groups.h"
Packit ea1746
#include "ceres/parameter_block.h"
Packit ea1746
#include "ceres/parameter_block_ordering.h"
Packit ea1746
#include "ceres/problem_impl.h"
Packit ea1746
#include "ceres/program.h"
Packit ea1746
#include "ceres/residual_block.h"
Packit ea1746
#include "ceres/solver.h"
Packit ea1746
#include "ceres/suitesparse.h"
Packit ea1746
#include "ceres/triplet_sparse_matrix.h"
Packit ea1746
#include "ceres/types.h"
Packit ea1746
#include "Eigen/SparseCore"
Packit ea1746
Packit ea1746
#ifdef CERES_USE_EIGEN_SPARSE
Packit ea1746
#include "Eigen/OrderingMethods"
Packit ea1746
#endif
Packit ea1746
Packit ea1746
#include "glog/logging.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
using std::map;
Packit ea1746
using std::set;
Packit ea1746
using std::string;
Packit ea1746
using std::vector;
Packit ea1746
Packit ea1746
namespace {
Packit ea1746
Packit ea1746
// Find the minimum index of any parameter block to the given
Packit ea1746
// residual.  Parameter blocks that have indices greater than
Packit ea1746
// size_of_first_elimination_group are considered to have an index
Packit ea1746
// equal to size_of_first_elimination_group.
Packit ea1746
static int MinParameterBlock(const ResidualBlock* residual_block,
Packit ea1746
                             int size_of_first_elimination_group) {
Packit ea1746
  int min_parameter_block_position = size_of_first_elimination_group;
Packit ea1746
  for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
Packit ea1746
    ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
Packit ea1746
    if (!parameter_block->IsConstant()) {
Packit ea1746
      CHECK_NE(parameter_block->index(), -1)
Packit ea1746
          << "Did you forget to call Program::SetParameterOffsetsAndIndex()? "
Packit ea1746
          << "This is a Ceres bug; please contact the developers!";
Packit ea1746
      min_parameter_block_position = std::min(parameter_block->index(),
Packit ea1746
                                              min_parameter_block_position);
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
  return min_parameter_block_position;
Packit ea1746
}
Packit ea1746
Packit ea1746
#if EIGEN_VERSION_AT_LEAST(3, 2, 2) && defined(CERES_USE_EIGEN_SPARSE)
Packit ea1746
Eigen::SparseMatrix<int> CreateBlockJacobian(
Packit ea1746
    const TripletSparseMatrix& block_jacobian_transpose) {
Packit ea1746
  typedef Eigen::SparseMatrix<int> SparseMatrix;
Packit ea1746
  typedef Eigen::Triplet<int> Triplet;
Packit ea1746
Packit ea1746
  const int* rows = block_jacobian_transpose.rows();
Packit ea1746
  const int* cols = block_jacobian_transpose.cols();
Packit ea1746
  int num_nonzeros = block_jacobian_transpose.num_nonzeros();
Packit ea1746
  vector<Triplet> triplets;
Packit ea1746
  triplets.reserve(num_nonzeros);
Packit ea1746
  for (int i = 0; i < num_nonzeros; ++i) {
Packit ea1746
    triplets.push_back(Triplet(cols[i], rows[i], 1));
Packit ea1746
  }
Packit ea1746
Packit ea1746
  SparseMatrix block_jacobian(block_jacobian_transpose.num_cols(),
Packit ea1746
                              block_jacobian_transpose.num_rows());
Packit ea1746
  block_jacobian.setFromTriplets(triplets.begin(), triplets.end());
Packit ea1746
  return block_jacobian;
Packit ea1746
}
Packit ea1746
#endif
Packit ea1746
Packit ea1746
void OrderingForSparseNormalCholeskyUsingSuiteSparse(
Packit ea1746
    const TripletSparseMatrix& tsm_block_jacobian_transpose,
Packit ea1746
    const vector<ParameterBlock*>& parameter_blocks,
Packit ea1746
    const ParameterBlockOrdering& parameter_block_ordering,
Packit ea1746
    int* ordering) {
Packit ea1746
#ifdef CERES_NO_SUITESPARSE
Packit ea1746
  LOG(FATAL) << "Congratulations, you found a Ceres bug! "
Packit ea1746
             << "Please report this error to the developers.";
Packit ea1746
#else
Packit ea1746
  SuiteSparse ss;
Packit ea1746
  cholmod_sparse* block_jacobian_transpose =
Packit ea1746
      ss.CreateSparseMatrix(
Packit ea1746
          const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose));
Packit ea1746
Packit ea1746
  // No CAMD or the user did not supply a useful ordering, then just
Packit ea1746
  // use regular AMD.
Packit ea1746
  if (parameter_block_ordering.NumGroups() <= 1 ||
Packit ea1746
      !SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) {
Packit ea1746
    ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]);
Packit ea1746
  } else {
Packit ea1746
    vector<int> constraints;
Packit ea1746
    for (int i = 0; i < parameter_blocks.size(); ++i) {
Packit ea1746
      constraints.push_back(
Packit ea1746
          parameter_block_ordering.GroupId(
Packit ea1746
              parameter_blocks[i]->mutable_user_state()));
Packit ea1746
    }
Packit ea1746
Packit ea1746
    // Renumber the entries of constraints to be contiguous integers
Packit ea1746
    // as CAMD requires that the group ids be in the range [0,
Packit ea1746
    // parameter_blocks.size() - 1].
Packit ea1746
    MapValuesToContiguousRange(constraints.size(), &constraints[0]);
Packit ea1746
    ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose,
Packit ea1746
                                                   &constraints[0],
Packit ea1746
                                                   ordering);
Packit ea1746
  }
Packit ea1746
Packit ea1746
  VLOG(2) << "Block ordering stats: "
Packit ea1746
          << " flops: " << ss.mutable_cc()->fl
Packit ea1746
          << " lnz  : " << ss.mutable_cc()->lnz
Packit ea1746
          << " anz  : " << ss.mutable_cc()->anz;
Packit ea1746
Packit ea1746
  ss.Free(block_jacobian_transpose);
Packit ea1746
#endif  // CERES_NO_SUITESPARSE
Packit ea1746
}
Packit ea1746
Packit ea1746
void OrderingForSparseNormalCholeskyUsingCXSparse(
Packit ea1746
    const TripletSparseMatrix& tsm_block_jacobian_transpose,
Packit ea1746
    int* ordering) {
Packit ea1746
#ifdef CERES_NO_CXSPARSE
Packit ea1746
  LOG(FATAL) << "Congratulations, you found a Ceres bug! "
Packit ea1746
             << "Please report this error to the developers.";
Packit ea1746
#else  // CERES_NO_CXSPARSE
Packit ea1746
  // CXSparse works with J'J instead of J'. So compute the block
Packit ea1746
  // sparsity for J'J and compute an approximate minimum degree
Packit ea1746
  // ordering.
Packit ea1746
  CXSparse cxsparse;
Packit ea1746
  cs_di* block_jacobian_transpose;
Packit ea1746
  block_jacobian_transpose =
Packit ea1746
      cxsparse.CreateSparseMatrix(
Packit ea1746
            const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose));
Packit ea1746
  cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose);
Packit ea1746
  cs_di* block_hessian =
Packit ea1746
      cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian);
Packit ea1746
  cxsparse.Free(block_jacobian);
Packit ea1746
  cxsparse.Free(block_jacobian_transpose);
Packit ea1746
Packit ea1746
  cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, ordering);
Packit ea1746
  cxsparse.Free(block_hessian);
Packit ea1746
#endif  // CERES_NO_CXSPARSE
Packit ea1746
}
Packit ea1746
Packit ea1746
Packit ea1746
#if EIGEN_VERSION_AT_LEAST(3, 2, 2)
Packit ea1746
void OrderingForSparseNormalCholeskyUsingEigenSparse(
Packit ea1746
    const TripletSparseMatrix& tsm_block_jacobian_transpose,
Packit ea1746
    int* ordering) {
Packit ea1746
#ifndef CERES_USE_EIGEN_SPARSE
Packit ea1746
  LOG(FATAL) <<
Packit ea1746
      "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE "
Packit ea1746
      "because Ceres was not built with support for "
Packit ea1746
      "Eigen's SimplicialLDLT decomposition. "
Packit ea1746
      "This requires enabling building with -DEIGENSPARSE=ON.";
Packit ea1746
#else
Packit ea1746
Packit ea1746
  // This conversion from a TripletSparseMatrix to a Eigen::Triplet
Packit ea1746
  // matrix is unfortunate, but unavoidable for now. It is not a
Packit ea1746
  // significant performance penalty in the grand scheme of
Packit ea1746
  // things. The right thing to do here would be to get a compressed
Packit ea1746
  // row sparse matrix representation of the jacobian and go from
Packit ea1746
  // there. But that is a project for another day.
Packit ea1746
  typedef Eigen::SparseMatrix<int> SparseMatrix;
Packit ea1746
Packit ea1746
  const SparseMatrix block_jacobian =
Packit ea1746
      CreateBlockJacobian(tsm_block_jacobian_transpose);
Packit ea1746
  const SparseMatrix block_hessian =
Packit ea1746
      block_jacobian.transpose() * block_jacobian;
Packit ea1746
Packit ea1746
  Eigen::AMDOrdering<int> amd_ordering;
Packit ea1746
  Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm;
Packit ea1746
  amd_ordering(block_hessian, perm);
Packit ea1746
  for (int i = 0; i < block_hessian.rows(); ++i) {
Packit ea1746
    ordering[i] = perm.indices()[i];
Packit ea1746
  }
Packit ea1746
#endif  // CERES_USE_EIGEN_SPARSE
Packit ea1746
}
Packit ea1746
#endif
Packit ea1746
Packit ea1746
}  // namespace
Packit ea1746
Packit ea1746
bool ApplyOrdering(const ProblemImpl::ParameterMap& parameter_map,
Packit ea1746
                   const ParameterBlockOrdering& ordering,
Packit ea1746
                   Program* program,
Packit ea1746
                   string* error) {
Packit ea1746
  const int num_parameter_blocks =  program->NumParameterBlocks();
Packit ea1746
  if (ordering.NumElements() != num_parameter_blocks) {
Packit ea1746
    *error = StringPrintf("User specified ordering does not have the same "
Packit ea1746
                          "number of parameters as the problem. The problem"
Packit ea1746
                          "has %d blocks while the ordering has %d blocks.",
Packit ea1746
                          num_parameter_blocks,
Packit ea1746
                          ordering.NumElements());
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  vector<ParameterBlock*>* parameter_blocks =
Packit ea1746
      program->mutable_parameter_blocks();
Packit ea1746
  parameter_blocks->clear();
Packit ea1746
Packit ea1746
  const map<int, set<double*> >& groups = ordering.group_to_elements();
Packit ea1746
  for (map<int, set<double*> >::const_iterator group_it = groups.begin();
Packit ea1746
       group_it != groups.end();
Packit ea1746
       ++group_it) {
Packit ea1746
    const set<double*>& group = group_it->second;
Packit ea1746
    for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
Packit ea1746
         parameter_block_ptr_it != group.end();
Packit ea1746
         ++parameter_block_ptr_it) {
Packit ea1746
      ProblemImpl::ParameterMap::const_iterator parameter_block_it =
Packit ea1746
          parameter_map.find(*parameter_block_ptr_it);
Packit ea1746
      if (parameter_block_it == parameter_map.end()) {
Packit ea1746
        *error = StringPrintf("User specified ordering contains a pointer "
Packit ea1746
                              "to a double that is not a parameter block in "
Packit ea1746
                              "the problem. The invalid double is in group: %d",
Packit ea1746
                              group_it->first);
Packit ea1746
        return false;
Packit ea1746
      }
Packit ea1746
      parameter_blocks->push_back(parameter_block_it->second);
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
bool LexicographicallyOrderResidualBlocks(
Packit ea1746
    const int size_of_first_elimination_group,
Packit ea1746
    Program* program,
Packit ea1746
    string* error) {
Packit ea1746
  CHECK_GE(size_of_first_elimination_group, 1)
Packit ea1746
      << "Congratulations, you found a Ceres bug! Please report this error "
Packit ea1746
      << "to the developers.";
Packit ea1746
Packit ea1746
  // Create a histogram of the number of residuals for each E block. There is an
Packit ea1746
  // extra bucket at the end to catch all non-eliminated F blocks.
Packit ea1746
  vector<int> residual_blocks_per_e_block(size_of_first_elimination_group + 1);
Packit ea1746
  vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
Packit ea1746
  vector<int> min_position_per_residual(residual_blocks->size());
Packit ea1746
  for (int i = 0; i < residual_blocks->size(); ++i) {
Packit ea1746
    ResidualBlock* residual_block = (*residual_blocks)[i];
Packit ea1746
    int position = MinParameterBlock(residual_block,
Packit ea1746
                                     size_of_first_elimination_group);
Packit ea1746
    min_position_per_residual[i] = position;
Packit ea1746
    DCHECK_LE(position, size_of_first_elimination_group);
Packit ea1746
    residual_blocks_per_e_block[position]++;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Run a cumulative sum on the histogram, to obtain offsets to the start of
Packit ea1746
  // each histogram bucket (where each bucket is for the residuals for that
Packit ea1746
  // E-block).
Packit ea1746
  vector<int> offsets(size_of_first_elimination_group + 1);
Packit ea1746
  std::partial_sum(residual_blocks_per_e_block.begin(),
Packit ea1746
                   residual_blocks_per_e_block.end(),
Packit ea1746
                   offsets.begin());
Packit ea1746
  CHECK_EQ(offsets.back(), residual_blocks->size())
Packit ea1746
      << "Congratulations, you found a Ceres bug! Please report this error "
Packit ea1746
      << "to the developers.";
Packit ea1746
Packit ea1746
  CHECK(find(residual_blocks_per_e_block.begin(),
Packit ea1746
             residual_blocks_per_e_block.end() - 1, 0) !=
Packit ea1746
        residual_blocks_per_e_block.end())
Packit ea1746
      << "Congratulations, you found a Ceres bug! Please report this error "
Packit ea1746
      << "to the developers.";
Packit ea1746
Packit ea1746
  // Fill in each bucket with the residual blocks for its corresponding E block.
Packit ea1746
  // Each bucket is individually filled from the back of the bucket to the front
Packit ea1746
  // of the bucket. The filling order among the buckets is dictated by the
Packit ea1746
  // residual blocks. This loop uses the offsets as counters; subtracting one
Packit ea1746
  // from each offset as a residual block is placed in the bucket. When the
Packit ea1746
  // filling is finished, the offset pointerts should have shifted down one
Packit ea1746
  // entry (this is verified below).
Packit ea1746
  vector<ResidualBlock*> reordered_residual_blocks(
Packit ea1746
      (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL));
Packit ea1746
  for (int i = 0; i < residual_blocks->size(); ++i) {
Packit ea1746
    int bucket = min_position_per_residual[i];
Packit ea1746
Packit ea1746
    // Decrement the cursor, which should now point at the next empty position.
Packit ea1746
    offsets[bucket]--;
Packit ea1746
Packit ea1746
    // Sanity.
Packit ea1746
    CHECK(reordered_residual_blocks[offsets[bucket]] == NULL)
Packit ea1746
        << "Congratulations, you found a Ceres bug! Please report this error "
Packit ea1746
        << "to the developers.";
Packit ea1746
Packit ea1746
    reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Sanity check #1: The difference in bucket offsets should match the
Packit ea1746
  // histogram sizes.
Packit ea1746
  for (int i = 0; i < size_of_first_elimination_group; ++i) {
Packit ea1746
    CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
Packit ea1746
        << "Congratulations, you found a Ceres bug! Please report this error "
Packit ea1746
        << "to the developers.";
Packit ea1746
  }
Packit ea1746
  // Sanity check #2: No NULL's left behind.
Packit ea1746
  for (int i = 0; i < reordered_residual_blocks.size(); ++i) {
Packit ea1746
    CHECK(reordered_residual_blocks[i] != NULL)
Packit ea1746
        << "Congratulations, you found a Ceres bug! Please report this error "
Packit ea1746
        << "to the developers.";
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Now that the residuals are collected by E block, swap them in place.
Packit ea1746
  swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
// Pre-order the columns corresponding to the schur complement if
Packit ea1746
// possible.
Packit ea1746
void MaybeReorderSchurComplementColumnsUsingSuiteSparse(
Packit ea1746
    const ParameterBlockOrdering& parameter_block_ordering,
Packit ea1746
    Program* program) {
Packit ea1746
#ifndef CERES_NO_SUITESPARSE
Packit ea1746
  SuiteSparse ss;
Packit ea1746
  if (!SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) {
Packit ea1746
    return;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  vector<int> constraints;
Packit ea1746
  vector<ParameterBlock*>& parameter_blocks =
Packit ea1746
      *(program->mutable_parameter_blocks());
Packit ea1746
Packit ea1746
  for (int i = 0; i < parameter_blocks.size(); ++i) {
Packit ea1746
    constraints.push_back(
Packit ea1746
        parameter_block_ordering.GroupId(
Packit ea1746
            parameter_blocks[i]->mutable_user_state()));
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Renumber the entries of constraints to be contiguous integers as
Packit ea1746
  // CAMD requires that the group ids be in the range [0,
Packit ea1746
  // parameter_blocks.size() - 1].
Packit ea1746
  MapValuesToContiguousRange(constraints.size(), &constraints[0]);
Packit ea1746
Packit ea1746
  // Compute a block sparse presentation of J'.
Packit ea1746
  scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
Packit ea1746
      program->CreateJacobianBlockSparsityTranspose());
Packit ea1746
Packit ea1746
  cholmod_sparse* block_jacobian_transpose =
Packit ea1746
      ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
Packit ea1746
Packit ea1746
  vector<int> ordering(parameter_blocks.size(), 0);
Packit ea1746
  ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose,
Packit ea1746
                                                 &constraints[0],
Packit ea1746
                                                 &ordering[0]);
Packit ea1746
  ss.Free(block_jacobian_transpose);
Packit ea1746
Packit ea1746
  const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
Packit ea1746
  for (int i = 0; i < program->NumParameterBlocks(); ++i) {
Packit ea1746
    parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
Packit ea1746
  }
Packit ea1746
Packit ea1746
  program->SetParameterOffsetsAndIndex();
Packit ea1746
#endif
Packit ea1746
}
Packit ea1746
Packit ea1746
void MaybeReorderSchurComplementColumnsUsingEigen(
Packit ea1746
    const int size_of_first_elimination_group,
Packit ea1746
    const ProblemImpl::ParameterMap& parameter_map,
Packit ea1746
    Program* program) {
Packit ea1746
#if !EIGEN_VERSION_AT_LEAST(3, 2, 2) || !defined(CERES_USE_EIGEN_SPARSE)
Packit ea1746
  return;
Packit ea1746
#else
Packit ea1746
Packit ea1746
  scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
Packit ea1746
      program->CreateJacobianBlockSparsityTranspose());
Packit ea1746
Packit ea1746
  typedef Eigen::SparseMatrix<int> SparseMatrix;
Packit ea1746
  const SparseMatrix block_jacobian =
Packit ea1746
      CreateBlockJacobian(*tsm_block_jacobian_transpose);
Packit ea1746
  const int num_rows = block_jacobian.rows();
Packit ea1746
  const int num_cols = block_jacobian.cols();
Packit ea1746
Packit ea1746
  // Vertically partition the jacobian in parameter blocks of type E
Packit ea1746
  // and F.
Packit ea1746
  const SparseMatrix E =
Packit ea1746
      block_jacobian.block(0,
Packit ea1746
                           0,
Packit ea1746
                           num_rows,
Packit ea1746
                           size_of_first_elimination_group);
Packit ea1746
  const SparseMatrix F =
Packit ea1746
      block_jacobian.block(0,
Packit ea1746
                           size_of_first_elimination_group,
Packit ea1746
                           num_rows,
Packit ea1746
                           num_cols - size_of_first_elimination_group);
Packit ea1746
Packit ea1746
  // Block sparsity pattern of the schur complement.
Packit ea1746
  const SparseMatrix block_schur_complement =
Packit ea1746
      F.transpose() * F - F.transpose() * E * E.transpose() * F;
Packit ea1746
Packit ea1746
  Eigen::AMDOrdering<int> amd_ordering;
Packit ea1746
  Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, int> perm;
Packit ea1746
  amd_ordering(block_schur_complement, perm);
Packit ea1746
Packit ea1746
  const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
Packit ea1746
  vector<ParameterBlock*> ordering(num_cols);
Packit ea1746
Packit ea1746
  // The ordering of the first size_of_first_elimination_group does
Packit ea1746
  // not matter, so we preserve the existing ordering.
Packit ea1746
  for (int i = 0; i < size_of_first_elimination_group; ++i) {
Packit ea1746
    ordering[i] = parameter_blocks[i];
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // For the rest of the blocks, use the ordering computed using AMD.
Packit ea1746
  for (int i = 0; i < block_schur_complement.cols(); ++i) {
Packit ea1746
    ordering[size_of_first_elimination_group + i] =
Packit ea1746
        parameter_blocks[size_of_first_elimination_group + perm.indices()[i]];
Packit ea1746
  }
Packit ea1746
Packit ea1746
  swap(*program->mutable_parameter_blocks(), ordering);
Packit ea1746
  program->SetParameterOffsetsAndIndex();
Packit ea1746
#endif
Packit ea1746
}
Packit ea1746
Packit ea1746
bool ReorderProgramForSchurTypeLinearSolver(
Packit ea1746
    const LinearSolverType linear_solver_type,
Packit ea1746
    const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
Packit ea1746
    const ProblemImpl::ParameterMap& parameter_map,
Packit ea1746
    ParameterBlockOrdering* parameter_block_ordering,
Packit ea1746
    Program* program,
Packit ea1746
    string* error) {
Packit ea1746
  if (parameter_block_ordering->NumElements() !=
Packit ea1746
      program->NumParameterBlocks()) {
Packit ea1746
    *error = StringPrintf(
Packit ea1746
        "The program has %d parameter blocks, but the parameter block "
Packit ea1746
        "ordering has %d parameter blocks.",
Packit ea1746
        program->NumParameterBlocks(),
Packit ea1746
        parameter_block_ordering->NumElements());
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  if (parameter_block_ordering->NumGroups() == 1) {
Packit ea1746
    // If the user supplied an parameter_block_ordering with just one
Packit ea1746
    // group, it is equivalent to the user supplying NULL as an
Packit ea1746
    // parameter_block_ordering. Ceres is completely free to choose the
Packit ea1746
    // parameter block ordering as it sees fit. For Schur type solvers,
Packit ea1746
    // this means that the user wishes for Ceres to identify the
Packit ea1746
    // e_blocks, which we do by computing a maximal independent set.
Packit ea1746
    vector<ParameterBlock*> schur_ordering;
Packit ea1746
    const int size_of_first_elimination_group =
Packit ea1746
        ComputeStableSchurOrdering(*program, &schur_ordering);
Packit ea1746
Packit ea1746
    CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks())
Packit ea1746
        << "Congratulations, you found a Ceres bug! Please report this error "
Packit ea1746
        << "to the developers.";
Packit ea1746
Packit ea1746
    // Update the parameter_block_ordering object.
Packit ea1746
    for (int i = 0; i < schur_ordering.size(); ++i) {
Packit ea1746
      double* parameter_block = schur_ordering[i]->mutable_user_state();
Packit ea1746
      const int group_id = (i < size_of_first_elimination_group) ? 0 : 1;
Packit ea1746
      parameter_block_ordering->AddElementToGroup(parameter_block, group_id);
Packit ea1746
    }
Packit ea1746
Packit ea1746
    // We could call ApplyOrdering but this is cheaper and
Packit ea1746
    // simpler.
Packit ea1746
    swap(*program->mutable_parameter_blocks(), schur_ordering);
Packit ea1746
  } else {
Packit ea1746
    // The user provided an ordering with more than one elimination
Packit ea1746
    // group.
Packit ea1746
Packit ea1746
    // Verify that the first elimination group is an independent set.
Packit ea1746
    const set<double*>& first_elimination_group =
Packit ea1746
        parameter_block_ordering
Packit ea1746
        ->group_to_elements()
Packit ea1746
        .begin()
Packit ea1746
        ->second;
Packit ea1746
    if (!program->IsParameterBlockSetIndependent(first_elimination_group)) {
Packit ea1746
      *error =
Packit ea1746
          StringPrintf("The first elimination group in the parameter block "
Packit ea1746
                       "ordering of size %zd is not an independent set",
Packit ea1746
                       first_elimination_group.size());
Packit ea1746
      return false;
Packit ea1746
    }
Packit ea1746
Packit ea1746
    if (!ApplyOrdering(parameter_map,
Packit ea1746
                       *parameter_block_ordering,
Packit ea1746
                       program,
Packit ea1746
                       error)) {
Packit ea1746
      return false;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  program->SetParameterOffsetsAndIndex();
Packit ea1746
Packit ea1746
  const int size_of_first_elimination_group =
Packit ea1746
      parameter_block_ordering->group_to_elements().begin()->second.size();
Packit ea1746
Packit ea1746
  if (linear_solver_type == SPARSE_SCHUR) {
Packit ea1746
    if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
Packit ea1746
      MaybeReorderSchurComplementColumnsUsingSuiteSparse(
Packit ea1746
          *parameter_block_ordering,
Packit ea1746
          program);
Packit ea1746
    } else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) {
Packit ea1746
      MaybeReorderSchurComplementColumnsUsingEigen(
Packit ea1746
          size_of_first_elimination_group,
Packit ea1746
          parameter_map,
Packit ea1746
          program);
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Schur type solvers also require that their residual blocks be
Packit ea1746
  // lexicographically ordered.
Packit ea1746
  if (!LexicographicallyOrderResidualBlocks(size_of_first_elimination_group,
Packit ea1746
                                            program,
Packit ea1746
                                            error)) {
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
bool ReorderProgramForSparseNormalCholesky(
Packit ea1746
    const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
Packit ea1746
    const ParameterBlockOrdering& parameter_block_ordering,
Packit ea1746
    Program* program,
Packit ea1746
    string* error) {
Packit ea1746
  if (parameter_block_ordering.NumElements() != program->NumParameterBlocks()) {
Packit ea1746
    *error = StringPrintf(
Packit ea1746
        "The program has %d parameter blocks, but the parameter block "
Packit ea1746
        "ordering has %d parameter blocks.",
Packit ea1746
        program->NumParameterBlocks(),
Packit ea1746
        parameter_block_ordering.NumElements());
Packit ea1746
    return false;
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Compute a block sparse presentation of J'.
Packit ea1746
  scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
Packit ea1746
      program->CreateJacobianBlockSparsityTranspose());
Packit ea1746
Packit ea1746
  vector<int> ordering(program->NumParameterBlocks(), 0);
Packit ea1746
  vector<ParameterBlock*>& parameter_blocks =
Packit ea1746
      *(program->mutable_parameter_blocks());
Packit ea1746
Packit ea1746
  if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
Packit ea1746
    OrderingForSparseNormalCholeskyUsingSuiteSparse(
Packit ea1746
        *tsm_block_jacobian_transpose,
Packit ea1746
        parameter_blocks,
Packit ea1746
        parameter_block_ordering,
Packit ea1746
        &ordering[0]);
Packit ea1746
  } else if (sparse_linear_algebra_library_type == CX_SPARSE) {
Packit ea1746
    OrderingForSparseNormalCholeskyUsingCXSparse(
Packit ea1746
        *tsm_block_jacobian_transpose,
Packit ea1746
        &ordering[0]);
Packit ea1746
  } else if (sparse_linear_algebra_library_type == EIGEN_SPARSE) {
Packit ea1746
#if EIGEN_VERSION_AT_LEAST(3, 2, 2)
Packit ea1746
       OrderingForSparseNormalCholeskyUsingEigenSparse(
Packit ea1746
        *tsm_block_jacobian_transpose,
Packit ea1746
        &ordering[0]);
Packit ea1746
#else
Packit ea1746
    // For Eigen versions less than 3.2.2, there is nothing to do as
Packit ea1746
    // older versions of Eigen do not expose a method for doing
Packit ea1746
    // symbolic analysis on pre-ordered matrices, so a block
Packit ea1746
    // pre-ordering is a bit pointless.
Packit ea1746
Packit ea1746
    return true;
Packit ea1746
#endif
Packit ea1746
  }
Packit ea1746
Packit ea1746
  // Apply ordering.
Packit ea1746
  const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
Packit ea1746
  for (int i = 0; i < program->NumParameterBlocks(); ++i) {
Packit ea1746
    parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
Packit ea1746
  }
Packit ea1746
Packit ea1746
  program->SetParameterOffsetsAndIndex();
Packit ea1746
  return true;
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres