Blame internal/ceres/normal_prior_test.cc

Packit ea1746
// Ceres Solver - A fast non-linear least squares minimizer
Packit ea1746
// Copyright 2015 Google Inc. All rights reserved.
Packit ea1746
// http://ceres-solver.org/
Packit ea1746
//
Packit ea1746
// Redistribution and use in source and binary forms, with or without
Packit ea1746
// modification, are permitted provided that the following conditions are met:
Packit ea1746
//
Packit ea1746
// * Redistributions of source code must retain the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer.
Packit ea1746
// * Redistributions in binary form must reproduce the above copyright notice,
Packit ea1746
//   this list of conditions and the following disclaimer in the documentation
Packit ea1746
//   and/or other materials provided with the distribution.
Packit ea1746
// * Neither the name of Google Inc. nor the names of its contributors may be
Packit ea1746
//   used to endorse or promote products derived from this software without
Packit ea1746
//   specific prior written permission.
Packit ea1746
//
Packit ea1746
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Packit ea1746
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Packit ea1746
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Packit ea1746
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Packit ea1746
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Packit ea1746
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Packit ea1746
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Packit ea1746
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Packit ea1746
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Packit ea1746
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Packit ea1746
// POSSIBILITY OF SUCH DAMAGE.
Packit ea1746
//
Packit ea1746
// Author: sameeragarwal@google.com (Sameer Agarwal)
Packit ea1746
Packit ea1746
#include "ceres/normal_prior.h"
Packit ea1746
Packit ea1746
#include <cstddef>
Packit ea1746
Packit ea1746
#include "gtest/gtest.h"
Packit ea1746
#include "ceres/internal/eigen.h"
Packit ea1746
#include "ceres/random.h"
Packit ea1746
Packit ea1746
namespace ceres {
Packit ea1746
namespace internal {
Packit ea1746
Packit ea1746
void RandomVector(Vector* v) {
Packit ea1746
  for (int r = 0; r < v->rows(); ++r)
Packit ea1746
    (*v)[r] = 2 * RandDouble() - 1;
Packit ea1746
}
Packit ea1746
Packit ea1746
void RandomMatrix(Matrix* m) {
Packit ea1746
  for (int r = 0; r < m->rows(); ++r) {
Packit ea1746
    for (int c = 0; c < m->cols(); ++c) {
Packit ea1746
      (*m)(r, c) = 2 * RandDouble() - 1;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(NormalPriorTest, ResidualAtRandomPosition) {
Packit ea1746
  srand(5);
Packit ea1746
Packit ea1746
  for (int num_rows = 1; num_rows < 5; ++num_rows) {
Packit ea1746
    for (int num_cols = 1; num_cols < 5; ++num_cols) {
Packit ea1746
      Vector b(num_cols);
Packit ea1746
      RandomVector(&b);
Packit ea1746
Packit ea1746
      Matrix A(num_rows, num_cols);
Packit ea1746
      RandomMatrix(&A);
Packit ea1746
Packit ea1746
      double * x = new double[num_cols];
Packit ea1746
      for (int i = 0; i < num_cols; ++i)
Packit ea1746
        x[i] = 2 * RandDouble() - 1;
Packit ea1746
Packit ea1746
      double * jacobian = new double[num_rows * num_cols];
Packit ea1746
      Vector residuals(num_rows);
Packit ea1746
Packit ea1746
      NormalPrior prior(A, b);
Packit ea1746
      prior.Evaluate(&x, residuals.data(), &jacobian);
Packit ea1746
Packit ea1746
      // Compare the norm of the residual
Packit ea1746
      double residual_diff_norm =
Packit ea1746
          (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
Packit ea1746
      EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
Packit ea1746
Packit ea1746
      // Compare the jacobians
Packit ea1746
      MatrixRef J(jacobian, num_rows, num_cols);
Packit ea1746
      double jacobian_diff_norm = (J - A).norm();
Packit ea1746
      EXPECT_NEAR(jacobian_diff_norm, 0.0, 1e-10);
Packit ea1746
Packit ea1746
      delete []x;
Packit ea1746
      delete []jacobian;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
TEST(NormalPriorTest, ResidualAtRandomPositionNullJacobians) {
Packit ea1746
  srand(5);
Packit ea1746
Packit ea1746
  for (int num_rows = 1; num_rows < 5; ++num_rows) {
Packit ea1746
    for (int num_cols = 1; num_cols < 5; ++num_cols) {
Packit ea1746
      Vector b(num_cols);
Packit ea1746
      RandomVector(&b);
Packit ea1746
Packit ea1746
      Matrix A(num_rows, num_cols);
Packit ea1746
      RandomMatrix(&A);
Packit ea1746
Packit ea1746
      double * x = new double[num_cols];
Packit ea1746
      for (int i = 0; i < num_cols; ++i)
Packit ea1746
        x[i] = 2 * RandDouble() - 1;
Packit ea1746
Packit ea1746
      double* jacobians[1];
Packit ea1746
      jacobians[0] = NULL;
Packit ea1746
Packit ea1746
      Vector residuals(num_rows);
Packit ea1746
Packit ea1746
      NormalPrior prior(A, b);
Packit ea1746
      prior.Evaluate(&x, residuals.data(), jacobians);
Packit ea1746
Packit ea1746
      // Compare the norm of the residual
Packit ea1746
      double residual_diff_norm =
Packit ea1746
          (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
Packit ea1746
      EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
Packit ea1746
Packit ea1746
      prior.Evaluate(&x, residuals.data(), NULL);
Packit ea1746
      // Compare the norm of the residual
Packit ea1746
      residual_diff_norm =
Packit ea1746
          (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
Packit ea1746
      EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
Packit ea1746
Packit ea1746
Packit ea1746
      delete []x;
Packit ea1746
    }
Packit ea1746
  }
Packit ea1746
}
Packit ea1746
Packit ea1746
}  // namespace internal
Packit ea1746
}  // namespace ceres